Skip to main content

Synthesis, Properties and Applications of Intermetallic Phases

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 1699 Accesses

Abstract

Intermetallic phases constitute a unique class of materials composed of two or more metals, sometimes non-metallic elements also, in definite proportions. They have well-defined stoichiometry, crystal structure and can exhibit metallic, covalent or ionic bonding. High mechanical strength, resistance to corrosion and adequate ductility of intermetallic phases make them widely applicable as structural materials for automobiles, aerospace, telecommunication, electronics, transport and heavy industries. There is a huge demand for alloys having high mechanical strength and corrosion resistance at elevated temperatures for energy applications. The physical properties and mechanical strength of alloys are governed by the presence of intermetallic phases in these alloys. The formation of these phases in a given alloy system on other hands is governed by the nature of synthesis of alloys, level of impurity phases present and the heat treatment process. Experimental conditions, like, level of vacuum, annealing temperature, rate of cooling and thermal shock are among the factors that play vital role in tailoring their properties. In the present chapter, types of intermetallic phases, various experimental procedures for their synthesis, processing and their properties will be discussed. Details of synthesis processes including heat treatment in different types of furnaces, mechanical alloying, electrochemical processes, chemical reduction methods will be discussed. Influence of annealing conditions on material properties will also be presented. The knowledge of phase diagram, structure and thermodynamic parameters in fixing the material properties will be brought out. The chapter will also include some of the technologically important intermetallic phases, their method of synthesis, properties and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion- controlled processes. In: Springer series in solid-state sciences, vol 155. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  2. Westbrook JH (1993) Structural intermetallics. In: Dariola R, Lewendowski JJ, Liu CT, Martin PL, Miracle DB, Nathal MV (eds) TMS, Warrendale, PA, pp 87–96

    Google Scholar 

  3. Sauthoff G (1995) Intermetallics. Wiley – VCH Verlag GmbH, Weinheim, Germany

    Google Scholar 

  4. Horton JA, Liu CT, George EP (1995) Shape memory properties of a two-phase NiAl plus Fe alloy. Mat Sci Eng A,192–193:873–880

    Google Scholar 

  5. Pike LM, Anderson IM, Liu CT, Chang YA (2002) Site occupancies, point defect concentrations, and solid solution hardening in B2 (Ni, Fe)Al. Acta Mater 50:3859–3879

    Article  CAS  Google Scholar 

  6. He YH, Jiang Y, Xu NP, Zou J, Huang BY, Liu CT, Liaw PK (2007) Fabrication of Ti–Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv Mater 19:2102–2106

    Article  CAS  Google Scholar 

  7. Cahn RW (1996) Multiphase intermetallics. In: Cahn RW, Evans AG, McLean M (eds) High-temperature structural materials. Springer, Dordrecht, pp 79–91

    Google Scholar 

  8. Adeva P (1999) Revista de la Asociacion Espanola de Cientificos 1:1

    Google Scholar 

  9. Kurnakov SFZNS, Zasedatelev M (1916) J Inst Met 15:305

    Google Scholar 

  10. Aoki K, Izumi O (1979) Flow and fracture behaviour of Ni3(Al·Ti) single crystals tested in tension. J Mater Sci 14:1800–1806

    Article  CAS  Google Scholar 

  11. He Y, Liu Y, Huang B, Qu X, Lei C (1994) Grain refiner for TiAl intermetallic compounds. J Mater Sci Technol 10:205–208

    CAS  Google Scholar 

  12. Nieh TG, Wadsworth J, Liu CT (2011) Mechanical properties of nickel beryllides. J Mater Res 4:1347–1353

    Article  Google Scholar 

  13. Takeyama M, Liu CT (1989) Grain-boundary contamination and ductility loss in boron-doped Ni3Al. Metall Trans A 20:2017–2023

    Article  Google Scholar 

  14. Bewlay BP, Weimer M, Kelly T, Suzuki A, Subramanian PR (2013) The science technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc 1516:49–58

    Article  Google Scholar 

  15. Xiao CB, Han YF, Li SS, Song JX (2003) Development of directionally solidified Ni-Al-Mo-B-Y alloy IC6A. Mater Sci Technol 19:1677–1680

    Article  CAS  Google Scholar 

  16. Jackson AG (1991) Handbook of Crystallography: for electron microscopists and others. Spinger, New York

    Google Scholar 

  17. Li Z, Mao H, Korzhavyi PA, Selleby M (2016) Thermodynamic re-assessment of the Co–Cr system supported by first-principles calculations. Calphad 52:7

    Article  Google Scholar 

  18. Schmid G (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds), vol 3, pp 1325

    Google Scholar 

  19. Andrews MP, O’Brien SC (1992) Gas-phase “molecular alloys” of bulk immiscible elements: iron-silver (FexAgy). J Phys Chem 96:8233–8241

    Article  CAS  Google Scholar 

  20. Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim Sci Mat 31:633–648

    Article  CAS  Google Scholar 

  21. Tong C-J, Chen M-R, Yeh J-W, Lin S-J, Chen S-K, Shun T-T, Chang S-Y (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:1263–1271

    Article  Google Scholar 

  22. Herbst JF (1993) Permanent magnets. Am Sci 81:9

    Google Scholar 

  23. Li XZ (2009) Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements. Acta Metall Sinica 22:219–224

    Google Scholar 

  24. Tong C-J, Chen Y-L, Yeh J-W, Lin S-J, Chen S-K, Shun T-T, Tsau C-H, Chang S-Y (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:881–893

    Article  Google Scholar 

  25. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18:1758–1765

    Article  CAS  Google Scholar 

  26. del Grosso MF, Bozzolo G, Mosca HO (2012) Determination of the transition to the high entropy regime for alloys of refractory elements. J Alloys Comp 534:25–31

    Article  Google Scholar 

  27. Chun Ng, Guo S, Luan J, Shi S, Liu CT (2012) Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics 31:165–172

    Google Scholar 

  28. Tsai M-H (2013) Physical properties of high entropy alloys. Entropy 15:5388–5345

    Article  Google Scholar 

  29. Cheng K-H, Lai C-H, Lin S-J, Yeh J-W (2006) Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. Ann Chim Sci Mat 31:723–736

    Article  CAS  Google Scholar 

  30. Chen Y Y, Duval T, Hong U T, Yeh J W, Shih H C, Wang L H, Oung J C (2007) Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 °C high-purity water. Mater Lett 61:2692–2696

    Google Scholar 

  31. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59:182–190

    Article  CAS  Google Scholar 

  32. Tsai M-H, Yeh J-W, Gan J-Y (2008) Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 516:5527–5530

    Article  CAS  Google Scholar 

  33. Tsai M-H, Wang C-W, Tsai C-W, Shen W-J, Yeh J-W, Gan J-Y, Wu W-W (2011) Thermal stability and performance of NbSiTaTiZr High-entropy alloy barrier for copper metallization. J Electrochem Soc 158:H1161

    Article  CAS  Google Scholar 

  34. Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123

    Article  Google Scholar 

  35. Williams SH (2009) PhD thesis, University of Iowa

    Google Scholar 

  36. Azami F (2005) Adv Mater Process 163:37

    Google Scholar 

  37. Lee S-H, Jung D-H, Jung S-J, Hong S-C, Lee J-J (2006) Low temperature deposition with inductively coupled plasma. Z Met 97:475–479

    CAS  Google Scholar 

  38. Yeh CL, Yeh CC (2005) Preparation of CoAl intermetallic compound by combustion synthesis in self-propagating mode. J Alloy Compd 388:241–249

    Article  CAS  Google Scholar 

  39. Pithawalla YB, El Shall MS, Deevi SC (2000) Synthesis and characterization of nanocrystalline iron aluminide particles. Intermetallics 8:1225–1231

    Article  CAS  Google Scholar 

  40. Rajan S, Shukla R, Kumar A, Vyas A, Brajpuriya R (2014) Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy. Int J Mater Res 106:114–126

    Google Scholar 

  41. Khan RBS, Vyas A, Kumar A (2015) Int J Sci Res 4:1243

    Google Scholar 

  42. Suryanarayana C (2005) Mechanical alloying and milling. Adv Mater 17:2893–2894

    Google Scholar 

  43. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  44. Suryanarayana C (1996) Recent advances in the synthesis of alloy phases by mechanical alloying/milling. Met Mater 2:195–209

    Article  CAS  Google Scholar 

  45. Simhadri D (2003) Determination of phase fraction, lattice parameters and crystallite size in mechanically alloyed Fe-Ni powders. University of New Orleans Theses and Dissertations. 56

    Google Scholar 

  46. Azzaza MBS, Aliofkhazraci M (eds) (2016) Hand book of mechanical nanostructuring, 1st edn. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  47. Chin ZH, Perng TP (1996) Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying. Mater Sci Forum 235–238:121–126

    Article  Google Scholar 

  48. Maziarz W, Dutkiewicz J, Senderski J (2004) Processing of nanocrystalline FeAlX (X = Ni, Mn) intermetallics using a mechanical alloying and hot pressing techniques. J Mater Sci 39:5425–5429

    Article  CAS  Google Scholar 

  49. Chen D, Chen J, Yan H, Chen Z (2007) Synthesis of binary and ternary intermetallic powders via a novel reaction ball milling technique. Mater Sci Eng A 444:1–5

    Article  Google Scholar 

  50. Chen D, Chen Z, Cai J, Chen Z (2008) Preparation of W-Al intermetallic compound powders by a mechanochemical approach. J Alloys Compd 461:L23–L25

    Article  CAS  Google Scholar 

  51. Chen D, Chen G, Ni S, Chen G, Yan H, Chen Z (2008) Phase formation regularities of ultrafine TiAl, NiAl and FeAl intermetallic compound powders during solid–liquid reaction milling. J Alloys Compd 457:292–295

    Article  CAS  Google Scholar 

  52. Bakker H, Zhou GF, Yang H (1995) Mechanically driven disorder and phase transformations in alloys. Prog Mater Sci 39:159–241

    Article  CAS  Google Scholar 

  53. Negri D, Yavari AR, Deriu A (1999) Deformation induced transformations and grain boundary thickness in nanocrystalline B2 FeAl. Acta Mater 47:4545–4554

    Article  CAS  Google Scholar 

  54. Yavari AR (1997) Ann Chim Sci Mater 22

    Google Scholar 

  55. Yavari AR (1993) Reordering kinetics and magnetic properties of mechanically disordered nanocrystalline Ll2-type Ni3Al + Fe alloys. Acta Metall Mater 41:1391–1403

    Article  CAS  Google Scholar 

  56. Benameur T, Yavari AR (2011) Disordering and amorphization of L12-type alloys by mechanical attrition. J Mater Res 7:2971–2977

    Article  Google Scholar 

  57. Yavari AR, Gialanella S, Benameur T, Cahn RW, Bochu B (2011) On the bcc, fcc, hcp, and amorphous polymorphs of Zr3Al. J Mater Res 8:242–244

    Article  Google Scholar 

  58. Singh S, Pappachan AL, Gadiyar HS (1986) Electroproduction of cerium and Ce-Co alloy. J Less Common Metals 120:307–315

    Google Scholar 

  59. Singh S, Pappachan AL (1990) Electrodeposition of lanthanum metal from fused chloride bath. Bull Electrochem 6:97–100

    CAS  Google Scholar 

  60. Lantelme FDR, Cartailler T, Berghoute Y, Hamdani M (2001) Physicochemical properties of lanthanide and yttrium solutions in fused salts and alloy formation with nickel. J Electrochem Soc 148:C604

    Google Scholar 

  61. Masset P, Konings RJM, Malmbeck R, Serp J, Glatz J-P (2005) Thermochemical properties of lanthanides (Ln=La,Nd) and actinides (An=U,Np,Pu,Am) in the molten LiCl–KCl eutectic. J Nucl Mater 344:173–179

    Google Scholar 

  62. Fusselman SP (1999) Thermodynamic properties for rare earths and Americium in pyropartitioning process solvents. J Electrochem Soc 146:2573

    Google Scholar 

  63. Gao F, Wang C, Liu L, Guo J, Chang S, Chang L, Li R, Ouyang Y (2009) Electrode process of La(III) in molten LiCl-KCl. J Rare Earths 27:986–990

    Article  Google Scholar 

  64. Vandarkuzhali S, Gogoi N, Ghosh S, Prabhakara Reddy B, Nagarajan K (2012) Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt. Electrochimica Acta 59:245–255

    Google Scholar 

  65. Tang H, Pesic B (2014) Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim Acta 119:120–130

    Article  CAS  Google Scholar 

  66. Castrillejo Y, Bermejo MR, Pardo R, Martı́nez AM (2002) Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides. J Electroanal Chem 522:124–140

    Google Scholar 

  67. Sahoo DK, Satpati AK, Krishnamurthy N (2015) Electrochemical properties of Ce(iii) in an equimolar mixture of LiCl–KCl and NaCl–KCl molten salts. RSC Adv 5:33163–33170

    Article  CAS  Google Scholar 

  68. Bavbande DV, Mishra R, Juneja JM (2004) Studies on the kinetics of synthesis of TiC by calciothermic reduction of TiO2 in presence of carbon. J Thermal Anal Calorimetry 78:775–780

    Article  CAS  Google Scholar 

  69. Ahmed HM, Viswanathan NN, Seetharaman S (2016) Gas-condensed phase reactions – a novel route to synthesize slloys and intermetallics involving refractory metals. Mater Today Proc 3(9):2951–2961

    Google Scholar 

  70. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  CAS  Google Scholar 

  71. Dingreville R, Qu J, Mohammed C (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53:1827–1854

    Article  CAS  Google Scholar 

  72. Ningthoujam RS, Sudhakar N, Rajeev KP, Gajbhiye NS (2002) Electrical resistivity study of La, B doped nanocrystalline superconducting vanadium nitride. J Appl Phys 91:6051–6056

    Article  CAS  Google Scholar 

  73. Sambles JR, Blackman M (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc Roy Soc London. A. Math Phys Sci 324:339–351

    Google Scholar 

  74. Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425

    Article  CAS  Google Scholar 

  75. Sheng HW, Lu K, Ma E (1998) Melting of embedded Pb nanoparticles monitored using high-temperature in situ XRD. Nanostruc Mater 10:865–873

    Article  CAS  Google Scholar 

  76. Peters KF, Cohen JB, Chung Y-W (1998) Melting of Pb nanocrystals. Phys Rev B 57:13430–13438

    Google Scholar 

  77. Cleveland CL, Luedtke WD, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077

    Article  CAS  Google Scholar 

  78. Pawlow P (1909) Ober die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz.). Z Phys Chem 65:545–548

    Google Scholar 

  79. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  CAS  Google Scholar 

  80. Borel JP (1981) Thermodynamical size effect and the structure of metallic clusters. Surf Sci 106:1–9

    Article  CAS  Google Scholar 

  81. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317

    Article  CAS  Google Scholar 

  82. Du YW, Xu MX, Wu J, Shi YB, Lu HX, Xue RH (1991) Magnetic properties of ultrafine nickel particles. J Appl Phys 70:5903–5905

    Google Scholar 

  83. Zhang D, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1998) Magnetization temperature dependence in iron nanoparticles. Phys Rev B 58:14167–14170

    Article  CAS  Google Scholar 

  84. Shir F, Yanik L, Bennett LH, Della Torre E, Shull RD (2003) Room temperature active regenerative magnetic refrigeration: magnetic nanocomposites. J Appl Phys 93:8295–8297

    Google Scholar 

  85. Castillo JD, Rodríguez VD, Yanes AC, Méndez-Ramos J, Torres ME (2005) Luminescent properties of transparent nanostructured Eu3+doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method. Nanotechnology 16:S300–S303

    Article  Google Scholar 

  86. Yanes AC, Del Castillo J, Torres M, Peraza J, Rodríguez VD, Méndez-Ramos J (2004) Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots. Appl Phys Lett 85:2343–2345

    Article  CAS  Google Scholar 

  87. Yang R, Huang J, Zhao W, Lai W, Zhang X, Zheng J, Li X (2010) Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. J Power Sources 195:6811–6816

    Article  CAS  Google Scholar 

  88. Mishra R, Zemanova A, Kroupa A, Flandorfer H, Ipser H (2012) Synthesis and characterization of Sn-rich Ni–Sb–Sn nanosolders. J Alloys Compounds 513:224–229

    Article  CAS  Google Scholar 

  89. Gajbhiye NS, Sharma S, Ningthoujam RS (2008) Synthesis of self-assembled monodisperse 3 nm FePd nanoparticles: phase transition, magnetic study, and surface effect. J Appl Phys 104:123906

    Google Scholar 

  90. Holmberg K (2004) Surfactant-templated nanomaterials synthesis. J Colloid Interf Sci 274:355–364

    Article  CAS  Google Scholar 

  91. Holmberg K, Jönsson B, Kronberg B, Lindaman B (2003) Surfactants and polymers in aqueous solutions, 2nd edn. Wiley, Chichester

    Google Scholar 

  92. Sanchez-Dominguez M, Koleilat H, Boutonnet M, Solans C (2011) Synthesis of Pt nanoparticles in oil-in-water microemulsions: phase behavior and effect of formulation parameters on nanoparticle characteristics. J Dispersion Sci Technol 32:1765–1770

    Article  CAS  Google Scholar 

  93. US EPA (2002) Health and environmental effects profile for hydrazine and hydrazine sulfate. report no. EPA/600/X-84/332 (NTIS PB88161963), U.S. Environmental Protection Agency: Washington, D.C. (Accessed April 15, 2018)

    Google Scholar 

  94. Ström L, Ström H, Carlsson P-A, Skoglundh M, Härelind H (2018) Catalytically active Pd–Ag alloy nanoparticles synthesized in microemulsion template. Langmuir 34:9754–9761

    Article  Google Scholar 

  95. Nandini P, Akash K, Rohit G, Vipul S, Palani IA (2017) Investigations on the influence of liquid-assisted laser ablation of NiTi rotating target to improve the formation efficiency of spherical alloyed NiTi nanoparticles. J Mater Eng Perform 26:4707–4717

    Article  CAS  Google Scholar 

  96. Chen Q, Song H, Zhang F, Zhang H, Yu Y, Chen Z, Wei R, Dai Y, Qiu J (2017) A strategy for fabrication of controllable 3D pattern containing clusters and nanoparticles inside a solid material. Nanoscale 9:9083–9088

    Article  CAS  Google Scholar 

  97. Fujita Y, Aubert R, Walke P, Yuan H, Kenens B, Inose T, Steuwe C, Toyouchi S, Fortuni B, Chamtouri M, Janssen KPF, De Feyter S, Roeffaers MBJ, Uji-i H (2017) Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale 9:13025–13033

    Article  CAS  Google Scholar 

  98. Sarker MSI, Nakamura TZ, Herbani Y, Sato S (2013) Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution. Appl Phys A 110:145–152

    Google Scholar 

  99. Assis M, Cordoncillo E, Torres-Mendieta R, Beltrán-Mir H, Mínguez-Vega G, Oliveira R, Leite ER, Foggi CC, Vergani CE, Longo E, Andrés J (2018) Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci Reports 8:1884

    Google Scholar 

  100. Machado TR, Macedo NG, Assis M, Doñate-Buendia C, Mínguez-Vega G, Teixeira MM, Foggi CC, Vergani CE, Beltrán-Mir H, Andrés J, Cordoncillo E, Longo E (2018) From complex inorganic oxides to Ag–Bi nanoalloy: synthesis by femtosecond laser irradiation. ACS Omega 3:9880–9887

    Article  CAS  Google Scholar 

  101. Bönnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 2455–2480

    Google Scholar 

  102. Braunstein JRP (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds), Wiley-VCH: Weinheim, vol 2, p 616

    Google Scholar 

  103. Esumi K, Tano T, Torigoe K, Meguro K (1990) Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567

    Article  CAS  Google Scholar 

  104. Bradley JS, Via GH, Bonneviot L, Hill EW (1996) Infrared and EXAFS study of compositional effects in nanoscale colloidal palladium−copper alloys. Chem Mater 8:1895–1903

    Article  CAS  Google Scholar 

  105. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20–30

    Article  CAS  Google Scholar 

  106. Kolay S, Kumar M, Wadawale A, Das D, Jain VK (2014) Cyclopalladation of telluro ether ligands: synthesis, reactivity and structural characterization. Dalton Trans 43:16056–16065

    Article  CAS  Google Scholar 

  107. Mann S (2001) Biomineralization: principles and concepts. In: Bioinorganic materials Chemistry. Oxford University Press, Oxford

    Google Scholar 

  108. Mann S (1996) Biomimetic materials Chemistry. VCH, New York

    Google Scholar 

  109. Brayner R, Coradin T, Fiévet-Vincent F, Livage J, Fiévet F (2005) Algal polysaccharide capsule-templated growth of magnetic nanoparticles. New J Chem 29:681–685

    Article  CAS  Google Scholar 

  110. Srivastava S, Samanta B, Arumugam P, Han G, Rotello VM (2007) DNA-mediated assembly of iron platinum (FePt) nanoparticles. J Mater Chem 17:52–55

    Article  CAS  Google Scholar 

  111. Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  112. Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33:76–79

    Article  CAS  Google Scholar 

  113. Remita S, Mostafavi M, Delcourt MO (1996) Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis. Radiat Phys Chem 47:275–279

    Article  CAS  Google Scholar 

  114. Belloni MMJ, Remita H, Marignier J-L, Delcourt M-O (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255

    Google Scholar 

  115. Belloni MMJ (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds) vol 2. Wiley-VCH, Weinheim, p 1213

    Google Scholar 

  116. Treguer M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose rate effects on radiolytic synthesis of gold−silver bimetallic clusters in solution. J Phys Chem B 102:4310–4321

    Article  CAS  Google Scholar 

  117. Doudna CM, Bertino MF, Tokuhiro AT (2002) Structural investigation of Ag−Pd clusters synthesized with the radiolysis method. Langmuir 18:2434–2435

    Article  CAS  Google Scholar 

  118. Doudna CM, Bertino MF, Blum FD, Tokuhiro AT, Lahiri-Dey D, Chattopadhyay S, Terry J (2003) Radiolytic synthesis of bimetallic Ag−Pt nanoparticles with a high aspect ratio. J Phys Chem B 107:2966–2970

    Article  CAS  Google Scholar 

  119. Jiang Y, He YH, Xu NP, Zou J, Huang BY, Liu CT (2008) Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics 16:327–332

    Article  CAS  Google Scholar 

  120. Jiang Y, Deng C, He Y, Zhao Y, Xu N, Zou J, Huang B, Liu CT (2009) Reactive synthesis of microporous titanium-aluminide membranes. Mater Lett 63:22–24

    Article  CAS  Google Scholar 

  121. Liang W, Jiang Y, Hongxing D, He Y, Xu N, Zou J, Huang B, Liu CT (2011) The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics 19:1759–1765

    Google Scholar 

  122. Dong HX, Jiang Y, He YH, Zou J, Xu NP, Huang BY, Liu CT, Liaw PK (2010) Oxidation behavior of porous NiAl prepared through reactive synthesis. Mater Chem Phys 122:417–423

    Article  CAS  Google Scholar 

  123. Gao HY, He YH, Shen PZ, Zou J, Xu NP, Jiang Y, Huang BY, Liu CT (2011) Congenerous and heterogeneous brazing of porous FeAl intermetallics. Powder Metall 54:142–147

    Article  CAS  Google Scholar 

  124. Liu X, Jiang Y, Zhang H, Yu L, Kang J, He Y (2015) Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis. J Eur Ceram Soc 35:1349–1353

    Article  CAS  Google Scholar 

  125. Wu L, He Y-H, Jiang Y, Zeng Y, Xiao Y-F, Nan B (2014) Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics. Trans Nonferrous Met Soc China 24:3509–3516

    Article  CAS  Google Scholar 

  126. Jiang Y, He YH, Huang BY, Zou J, Huang H, Xu NP, Liu CT (2011) Criterion to control self-propagation high temperature synthesis for porous Ti–Al intermetallics. Powder Metall 54:404–407

    Article  Google Scholar 

  127. Chen MR, Jiang Y, He YH, Lin LW, Huang BY, Liu CT (2012) Pore evolution regulation in synthesis of open pore structured Ti–Al intermetallic compounds by solid diffusion. J Alloys Compd 521:12–15

    Article  CAS  Google Scholar 

  128. Frenkel JJ (1945) Viscous flow of crystalline bodies under the action of surface tension. J Phys 9:385–391

    Google Scholar 

  129. Ristic MM, Milosević SĐ (2006) Frenkel’s theory of sintering. Sci Sinter 38:7–11

    Article  CAS  Google Scholar 

  130. Hoge CE, Pask JA (1977) Thermodynamic and geometric considerations of solid state sintering. Ceramurg Int 3:95–99

    Article  CAS  Google Scholar 

  131. Maulik O, Kumar V (2015) Synthesis of AlFeCuCrMgx (x=0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact 110:116–125

    Google Scholar 

  132. Kumar S, Kumar D, Maulik O, Pradhan AK, Kumar V, Patniak A (2018) Synthesis and air jet erosion study of AlXFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall Mater Trans A 49:5607–5618

    Google Scholar 

  133. Tunes MA, Vishnyakov VM, Donnelly SE (2018) Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloys. Thin Solid Films 649:115–120

    Article  CAS  Google Scholar 

  134. Li RX, Liaw PK, Zhang Y (2017) Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater Sci Eng A 707:668–673

    Google Scholar 

  135. Ye X, Ma M, Cao Y, Liu W, Ye X, Gu Y (2011) The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding. Phys Procedia 12:303–312

    Article  CAS  Google Scholar 

  136. Zeng C, Tian W, Liao WH, Hua L (2016) Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surf Coat Technol 294:122–130

    Article  CAS  Google Scholar 

  137. Zhang M, Zhou X, Yu X, Li J (2017) Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol 311:321–329

    Article  CAS  Google Scholar 

  138. Qiu X-W, Zhang Y-P, He L, Liu C-G (2013) Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd 549:195–199

    Article  CAS  Google Scholar 

  139. Basuki EA, Prajitno DH, Muhammad F (2017) Alloys developed for high temperature applications. AIP Conf Proc 1805:020003-1–020003-15

    Google Scholar 

  140. Mouritz AP (2012) Superalloys for gas turbine engines. In: Mouritz AP (ed) Introduction to aerospace materials. Woodhead Publishing, pp 251–267

    Google Scholar 

  141. Mousavi T, Hong Z, Morrison A, London A, Grant P S, Grovenor, Speller S C (2017) A new approach to fabricate superconducting NbTi alloys. Supercond Sci Technol 30:09001

    Google Scholar 

  142. Narushima T., Ueda K., Alfirano (2015) Co-Cr Alloys as Effective Metallic Biomaterials. In: Niinomi M., Narushima T., Nakai M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg

    Google Scholar 

  143. Elias C.N., Lima J.H.C., Valiev R. Meyers M A (2008) Biomedical applications of titanium and its alloys. JOM 60:46–49

    Google Scholar 

  144. do Prado RF, Esteves GC, Santos ELDS, Bueno DAG, Cairo CAA, Vasconcellos LGOD (2018) In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS ONE 13(5): e0196169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratikant Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R., Dawar, R. (2021). Synthesis, Properties and Applications of Intermetallic Phases. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_15

Download citation

Publish with us

Policies and ethics