Skip to main content

Algal Biomass: Potential Renewable Feedstock for Bioenergy Production

  • Chapter
  • First Online:
Bioenergy Research: Integrative Solution for Existing Roadblock

Abstract

The rising need for energy due to the increase in the population and its desire for higher living standards has emerged as one of the major problems for scientists. In the past few years, the diversification of bioenergy sources isn’t able to come up to the commercialization step; this has emerged as an important energy issue. The researches based on third-generation bioenergy production from algal biomass have emerged as the most potential resource among all the resources that minimize the drawbacks of the first- and second-generation bioenergy. Algal biomass is considered for the economic production of bioenergy like bioethanol, biodiesel, biohydrogen, biogas, and other co-products. This potential of algae is due to its high growth rate, CO2 utilization, less greenhouse gas (GHG) emission, and ability to store a high amount of carbohydrates and lipids. In this chapter, we will study the importance of algal biomass in terms of improved bioenergy production. This chapter discusses different recent development and findings for high algae cultivation with enhanced cell content especially lipids, various harvesting techniques, oil extraction methods, and algal oil to bioenergy conversion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Hattab M, Ghaly A, Hammouda A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5(2):1000154

    Google Scholar 

  • Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition a historical perspective. Photosynth Res 76:343–370

    Article  Google Scholar 

  • Anandraj A, Perissinotto R, Nozais C (2007) A comparative study of microalgal production in a marine versus a river-dominated temporarily open/closed estuary, South Africa. Estuar Coast Shelf Sci 73:768–780

    Article  Google Scholar 

  • Banse M, Van Meijl H, Tabeau A, Woltjer G, Hellmann F, Verburg PH (2011). Impact of EU biofuel policies on world agricultural production and land use. Biomass and Bioenergy 35(6):2385–2390

    Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Article  Google Scholar 

  • Bell DJ, Hoare M, Dunnill P (1983) The formation of protein precipitates and their centrifugal recovery. In: Downstream processing. Springer, Berlin, pp 1–72

    Chapter  Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    Article  Google Scholar 

  • Berk Z (2018) Food process engineering and technology. Academic, New York

    Google Scholar 

  • Bienfang PK (1981) Sinking rates of heterogeneous, temperate phytoplankton populations. J Plankton Res 3(2):235–253

    Article  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102(1):215–225

    Article  Google Scholar 

  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Bracharz F, Helmdach D, Aschenbrenner I, Funck N, Wibberg D, Winkler A, Bohnen F, Kalinowski J, Mehlmer N, Brück TB (2018) Harvest of the oleaginous microalgae Scenedesmus obtusiusculus by flocculation from culture based on natural water sources. Front Bioeng Biotechnol 6:200

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  Google Scholar 

  • Brzezinski MA (1985) The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables 1. J Phycol 21(3):347–357

    Article  Google Scholar 

  • Campbell MN (2008) Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1(1):2–7

    MathSciNet  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  Google Scholar 

  • Cheng J, Huang R, Yu T, Li T, Zhou J, Cen K (2014) Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Bioresour Technol 151:415–418

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Google Scholar 

  • Choi KJ, Nakhost Z, Krukonis VJ, Karel M (1987) Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus. Food Biotechnol 1(2):263–281

    Article  Google Scholar 

  • Chye JTT, Jun LY, Yon LS, Pan S, Danquah MK (2018) Biofuel production from algal biomass. Bioenergy Biofuels 621:7

    Google Scholar 

  • Cole TM, Wells SA (2006) CE-QUAL-W2: a two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.5

    Google Scholar 

  • Connor R, Adkins H (1932) Hydrogenolysis of oxygenated organic compounds. J Am Chem Soc 54(12):4678–4690

    Article  Google Scholar 

  • Costa JAV, de Morais MG (2014) An open pond system for microalgal cultivation. In: Biofuels from algae. Elsevier, London, pp 1–22

    Google Scholar 

  • Dassey AJ, Theegala CS (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245

    Google Scholar 

  • Demirbas A (2011) Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl Energy 88(10):3541–3547

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170

    Article  MATH  Google Scholar 

  • Díaz-Santos E, Vila M, de la Vega M, León R, Vigara J (2015) Study of bioflocculation induced by Saccharomyces bayanus var. uvarum and flocculating protein factors in microalgae. Algal Res 8:23–29

    Google Scholar 

  • Drexler ILC, Yeh DH (2014) Membrane applications for microalgae cultivation and harvesting: a review. Rev Environ Sci Biotechnol 13(4):487–504

    Google Scholar 

  • Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101(13):4814–4819

    Article  Google Scholar 

  • Fast SA, Kokabian B, Gude VG (2014) Chitosan enhanced coagulation of algal turbid waters–comparison between rapid mix and ultrasound coagulation methods. Chem Eng J 244:403–410

    Article  Google Scholar 

  • Galadima A, Muraza O (2014) Biodiesel production from algae by using heterogeneous catalysts: a critical review. Energy 78:72–83

    Article  Google Scholar 

  • Gong M, Hu Y, Yedahalli S, Bassi A (2017) Oil extraction processes in microalgae. Recent Adv Renew Energy 1:377–411

    Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, Heidelberg

    Book  Google Scholar 

  • Grima EM, Fernández FA, Medina AR (2004) Downstream processing of cell-mass and products. In: Handbook of microalgal culture: biotechnology and applied phycology. Wiley, Hoboken, p 215

    Google Scholar 

  • Gultom SO, Hu B (2013) Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6(11):5921–5939

    Article  Google Scholar 

  • Guo Y, Yeh T, Song W, Xu D, Wang S (2015) A review of bio-oil production from hydrothermal liquefaction of algae. Renew Sust Energ Rev 48:776–790

    Article  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31(9):1409–1417

    Article  Google Scholar 

  • Gupta SK, Dhandayuthapani K, Ansari FA (2019) Techno-economic perspectives of bioremediation of wastewater, dewatering, and biofuel production from microalgae: an overview. In: Phytomanagement of polluted sites. Elsevier, London, pp 471–499

    Chapter  Google Scholar 

  • Guillard RR, Ryther JH, (1962). Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8(2):229–239

    Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185

    Article  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88(10):3464–3467

    Article  Google Scholar 

  • Heasman M, Diemar J, O'connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquac Res 31(8-9):637–659

    Google Scholar 

  • Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010:1–11

    Article  Google Scholar 

  • Huo S, Wang Z, Zhu S, Cui F, Zou B, You W, Yuan Z, Dong R (2014) Optimization of alkaline flocculation for harvesting of Scenedesmus quadricauda# 507 and Chaetocerosmuelleri# 862. Energies 7(9):6186–6195

    Article  Google Scholar 

  • Hussian M, Ellatif A (2018) The role of microalgae in renewable energy production: challenges and opportunities. IntechOpen, London

    Google Scholar 

  • Japar AS, Azis NM, Takriff MS, Yasin NHM (2017) Application of different techniques to harvest microalgae. Trans Sci Technol 4(2):98–108

    Google Scholar 

  • Jazrawi C, Biller P, He Y, Montoya A, Ross AB, Maschmeyer T, Haynes BS (2015) Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22

    Article  Google Scholar 

  • Jena U, McCurdy AT, Warren A, Summers H, Ledbetter RN, Hoekman SK, Quinn JC (2015) Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction. Biotechnol Biofuels 8(1):1–19

    Article  Google Scholar 

  • Kim DG, Oh HM, Park YH, Kim HS, Lee HG, Ahn CY (2013) Optimization of flocculation conditions for Botryococcus braunii using response surface methodology. J Appl Phycol 25(3):875–882

    Article  Google Scholar 

  • Kim DY, Lee K, Lee J, Lee YH, Han JI, Park JY, Oh YK (2017) Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresour Technol 239:190–196

    Article  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DM (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35(3):300–313

    Article  Google Scholar 

  • Kwon H, Lu M, Lee EY, Lee J (2014) Harvesting of microalgae using flocculation combined with dissolved air flotation. Biotechnol Bioprocess Eng 19(1):143–149

    Article  Google Scholar 

  • Laurens LML, Nagle N, Davis R, Sweeney N, Van Wychen S, Lowell A, Pienkos PT (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem 17(2):1145–1158

    Article  Google Scholar 

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO fisheries technical paper 361

    Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2010) Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res Des 88(8):988–996

    Article  Google Scholar 

  • Lee SY, Cho JM, Chang YK, Oh YK (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresour Technol 244:1317–1328

    Article  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois‐Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    Google Scholar 

  • Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38(8):965–977

    Article  Google Scholar 

  • Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, Sang M, Zhang C (2013) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6(1):98

    Article  Google Scholar 

  • Mandawat P (2016) Hydrolysis of algal biomass to recover nutrients and sugar. Doctoral dissertation, Indian Institute of Technology

    Google Scholar 

  • Mathimani T, Mallick N (2018) A comprehensive review on harvesting of microalgae for biodiesel–Key challenges and future directions. Renew Sust Energ Rev 91:1103–1120

    Article  Google Scholar 

  • Matter IA, Darwesh OM, El-baz FK (2016) Using the natural polymer chitosan in harvesting Scenedesmus species under different concentrations and cultural pH values. Int J Pharm Bio Sci 7(4):254–260

    Article  Google Scholar 

  • Meskar M (2018) Treatment of petroleum contaminated soil using supercritical fluid extraction (SFE) technology. Doctoral dissertation. Universitéd'Ottawa/University of Ottawa

    Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry FAO Fisheries Technical Paper 441. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Milledge JJ, Heaven S (2011) Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res 1(1):17–24

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 395–414

    Google Scholar 

  • Muller-Feuga A, Le Guédes R, Hervé A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using Porphyridiumcruentum. J Appl Phycol 10(1):83–90

    Article  Google Scholar 

  • Muradov N, Taha M, Miranda AF, Wrede D, Kadali K, Gujar A, Stevenson T, Ball AS, Mouradov A (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8(1):24

    Article  Google Scholar 

  • Noyes R (1994) Unit operations in environmental engineering. Elsevier, London

    Google Scholar 

  • Oil O (2010) Algae harvesting, dewatering and extraction. World Biofuel Markets, Amsterdam

    Google Scholar 

  • Oncel SS (2013) Microalgae for a macroenergy world. Renew Sust Energ Rev 26:241–264

    Article  Google Scholar 

  • Pahl SL, Lee AK, Kalaitzidis T, Ashman PJ, Sathe S, Lewis DM (2013) Harvesting, thickening and dewatering microalgae biomass. In: Algae for biofuels and energy. Springer, Dordrecht, pp 165–185

    Chapter  Google Scholar 

  • Pandey A, Teixeira J.A.C. (2016). Current Developments in Biotechnology and Bioengineering: Foundations of Biotechnology and Bioengineering. Elsevier.

    Google Scholar 

  • Patil PD, Reddy H, Muppaneni T, Deng S (2017) Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel 195:201–207

    Article  Google Scholar 

  • Paul G, Datta A, Mandal BK (2014) An Experimental and Numerical Investigation of the Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled with Jatropha Biodiesel. Energy Procedia 54:455–467

    Google Scholar 

  • Peperzak L, Colijn F, Koeman R, Gieskes WWC, Joordens JCA (2003) Phytoplankton sinking rates in the Rhine region of freshwater influence. J Plankton Res 25(4):365–383

    Article  Google Scholar 

  • Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285

    Article  Google Scholar 

  • Peng C, Li S, Zheng J, Huang S, Li D (2017) Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants. Appl Biochem Biotechnol 181(1):112–124

    Google Scholar 

  • Pittman JK, Dean AP, Olumayowa O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  Google Scholar 

  • Ramirez J, Brown R, Rainey T (2015) A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels. Energies 8(7):6765–6794

    Google Scholar 

  • Rahman QM (2018) Techno-economic Analysis of a novel biorefinery to produce biodiesel and organic fertilizer from wet microalgae. Doctoral dissertation, North Carolina A&T State University

    Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. University Press of Liverpool, Liverpool, pp 176–192

    Google Scholar 

  • Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology. Wiley, Oxford, p 736

    Book  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200:168–175

    Article  Google Scholar 

  • Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: current status and key challenges. Energies 12(10):1920

    Article  Google Scholar 

  • Salim S, Vermuë MH, Wijffels RH (2012) Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour Technol 118:49–55

    Article  Google Scholar 

  • Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308

    Article  Google Scholar 

  • Sanyano N, Chetpattananondh P, Chongkhong S (2013) Coagulation–flocculation of marine Chlorella sp. for biodiesel production. Bioresour Technol 147:471–476

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review (No. SERI/STR-231-2396). Technion Research and Development Foundation Ltd., Haifa

    Book  Google Scholar 

  • Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52(4):1275–1287

    Article  Google Scholar 

  • Shen Y, Cui Y, Yuan W (2013) Flocculation optimization of microalga Nannochloropsisoculata. Appl Biochem Biotechnol 169(7):2049–2063

    Article  Google Scholar 

  • Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508

    Article  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production–a review. Renew Sust Energ Rev 16(4):2347–2353

    Article  Google Scholar 

  • Soccol CR (2019) Technologies for separation and drying of algal biomass for varied applications. In: Handbook of algal technologies and phytochemicals. CRC Press, New York, pp 241–250

    Google Scholar 

  • Soh L, Zimmerman J (2011) Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chem 13(6):1422–1429

    Article  Google Scholar 

  • Soomro RR, Ndikubwimana T, Zeng X, Lu Y, Lin L, Danquah MK (2016) Development of a two-stage microalgae dewatering process–a life cycle assessment approach. Front Plant Sci 7:113

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Google Scholar 

  • Spelter LE, Nirschl H (2010) Classification of fine particles in high-speed centrifuges. Chem Eng Technol 33(8):1276–1282

    Article  Google Scholar 

  • Srinivasan B, Kulshreshtha G (2020). Algal Biomass for Biofuels and Bioproducts. Bioprocess Engineering for Bioremediation: Valorization and Management Techniques, pp.139–160

    Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (2013) Principles of fermentation technology. Elsevier, London

    Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel productionsystems. Trends Plant Sci 15(10):554–564

    Article  Google Scholar 

  • Stewart M, Arnold K (2011) Part 1-produced water treating systems. Produced water treatment field manual, pp 1–134.

    Google Scholar 

  • Straathof AJ, Adlercreutz P (eds) (2000) Applied biocatalysis. CRC Press, New York

    Google Scholar 

  • Surendhiran D, Vijay M (2013) Study on flocculation efficiency for harvesting Nannochloropsis oculata for biodiesel production. Int J ChemTech Res 5(4):1761–1769

    Google Scholar 

  • Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT, Shuit SH (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sust Energ Rev 115:109361

    Article  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renewable and Sustainable Energy Rev 16(6):4316–4342

    Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  Google Scholar 

  • Thao NTP, Tin NT, Thanh BX (2013) Biodiesel production from microalgae by extraction–transesterification method. Waste Technol 1(1):6–9

    Article  Google Scholar 

  • Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sust Energ Rev 38:933–950

    Article  Google Scholar 

  • Tork MB, Khalilzadeh R, Kouchakzadeh H (2017) Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology. Bioresour Technol 243:583–588

    Article  Google Scholar 

  • Tran NAT, Seymour JR, Siboni N, Evenhuis CR, Tamburic B (2017) Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsisoculata. Algal Res 26:302–311

    Article  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustainable Energy 2(1):012701

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    Google Scholar 

  • Ventura SP, Quental MV, Mondal D, Freire MG, Coutinho JA (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev 117(10):6984–7052

    Article  Google Scholar 

  • Van Straten G, Herodek S (1982) Estimation of algal growth parameters from vertical primary production profiles. Ecol Model 15(4):287–311

    Google Scholar 

  • Waite AM, Thompson PA, Harrison PJ (1992) Does energy control the sinking rates of marine diatoms? Limnol Oceanogr 37(3):468–477

    Article  Google Scholar 

  • Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fish Investig 26:162

    Google Scholar 

  • Wang D, Li Y, Hu X, Su W, Zhong M (2015) Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochlorisoleoabundans. Int J Mol Sci 16(4):7707–7722

    Article  Google Scholar 

  • Williams PJLB, Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590

    Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang D-J, Bae H-J (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100(24):6658–6660

    Google Scholar 

  • Xu D, Lin G, Guo S, Wang S, Guo Y, Jing Z (2018) Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review. Renew Sust Energ Rev 97:103–118

    Article  Google Scholar 

  • Yoo C, La HJ, Kim SC, Oh HM (2015) Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation. Biotechnol Bioeng 112(2):288–296

    Article  Google Scholar 

  • Yoon M, Choi JI, Lee JW, Park DH (2012) Improvement of saccharification process for bioethanol production from Undariasp by gamma irradiation. Radiat Phys Chem 81(8):999–1002. https://doi.org/10.1016/j.radphyschem.2011.11.035

    Article  Google Scholar 

  • Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167(2):214–228

    Article  Google Scholar 

  • Zhang J, Osmani A, Awudu I, Gonela V (2013) An integrated optimization model for switchgrass-based bioethanol supply chain. Appl Energy 102:1205–1217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Farooqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooqui, A. et al. (2021). Algal Biomass: Potential Renewable Feedstock for Bioenergy Production. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Integrative Solution for Existing Roadblock . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1888-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1888-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1887-1

  • Online ISBN: 978-981-16-1888-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics