Skip to main content

Hydrogen Production by Utilizing Bio-Processing Techniques

  • Chapter
  • First Online:
Bioenergy Research: Biomass Waste to Energy

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Hydrogen is contemplated as one of the most reliable, hopeful option, and it is also considered that it would be the best option for next generation fuel. Hydrogen is also recognized as a carrier of green energy. In various countries, hydrogen is contemplated to be a prominent substitute vector of energy, which may be a causeway and a prospect to a sustainable energy resource. Hydrogen is not a freely accessible primary energy source in nature; it is a form of secondary energy source. There are good opportunities to convert this secondary energy source into other energy sourced like electricity. Hydrogen can also be produced from diversified energy sources using different manufacturing techniques and can be utilized in different areas. Bioprocesses provide opportunities to produce hydrogen from rechargeable, economical, and ecofriendly biological resources such as biomass and solar energy by different natural processes like photo fermentation, dark-fermentation, and direct or indirect photolysis. This chapter provides vast information on production of hydrogen using biological sources like microorganisms, different substrates concentrations, role of added chemicals, process variables, such as pH and temperature of substrates, agitation, and so on. Recent researches are giving more emphasis on sustainable and ecofriendly energy from electrolysis, biomass, biocatalysis, and photo-catalysis to replace traditional fossil fuels. These techniques may be the best choices with huge potential, which can meet the energy need and can ensure uninterrupted supply of fuel in the future. In this chapter complete attention is given on the different pathways of production of hydrogen and its practical application in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas HF, Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrog Energy 35:1160–1190

    Article  CAS  Google Scholar 

  • Abdalla MA, Shahzad H, Ozzan BN, Atia TA, Mohamed D, Abul KA (2018) Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manag 165:602–627

    Article  CAS  Google Scholar 

  • Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrog Energy 39:1–12

    Article  CAS  Google Scholar 

  • Ahmed I, Gupta AK (2009) Syngas yield during pyrolysis and steam gasification of paper. Appl Energy 86:1813–1821

    Article  CAS  Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27:1195–1208

    Article  CAS  Google Scholar 

  • Alvarado-Cuevas ZD, Ordonez Acevedo LG, Salas JTO, Leon-Rodriguez AD (2013) Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate. New Biotechnol 30:585–590

    Article  CAS  Google Scholar 

  • Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36:7443–7459

    Article  CAS  Google Scholar 

  • Argun H, Kargı F, Kapdan IK, Oztekin R (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrog Energy 33:1813–1819

    Article  CAS  Google Scholar 

  • Asadullah M, Ito S-I, Kunimori K, Yamada M, Tomishige K (2002) Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification. Environ Sci Technol 36:4476–4481

    Article  CAS  PubMed  Google Scholar 

  • Bagchi B, Rawlston J, Counce RM, Holmes JM, Bienkowski PR (2006) Green production of hydrogen from excess biosolids originating from municipal waste water treatment. Sep Sci Technol 41:2613–2628

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009a) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86:2273–2282

    Article  CAS  Google Scholar 

  • Balat M, Balat M (2009b) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603

    Article  CAS  Google Scholar 

  • Bao M, Su H, Tan T (2012) Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of Bacillus sp and Brevumdimonas sp. Energy Fuel 26:5872–5878

    Article  CAS  Google Scholar 

  • Bao MD, Su HJ, Tan TW (2013) Dark fermentative bio-hydrogen production: effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112:38–44

    Article  CAS  Google Scholar 

  • Baykara SZ (2004) Hydrogen production by direct solar thermal, decomposition of water, possibilities for improvement of process efficiency. Int J Hydrog Energy 29:1451–1458

    Article  CAS  Google Scholar 

  • Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184(4133):174–175

    Article  CAS  PubMed  Google Scholar 

  • Bridgewater AV (2004) Biomass fast pyrolysis. Therm Sci 8:21–49

    Article  Google Scholar 

  • Cammack R, Frey M, Robson RW (2001) Hydrogen as a fuel. Taylor and Francis, London

    Book  Google Scholar 

  • Chaganti SR, Kim DH, Lalman JA (2012) Dark fermentative hydrogen production by mixed anaerobic cultures: effect of inoculum treatment methods on hydrogen yield. Renew Energy 48:117–121

    Article  CAS  Google Scholar 

  • Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS (2008a) Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J Hydrog Energy 33:6886–6895

    Article  CAS  Google Scholar 

  • Chen WH, Lin MR, Jiang TL, Chen MH (2008b) Modeling and simulation of high-temperature and low-temperature water gas shift reactions. Int J Hydrog Energy 33:6644–6656

    Article  CAS  Google Scholar 

  • Corneli E, Adessi A, Dragoni F, Ragaglini G, Bonari E, De Philippis R (2016) Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photo-fermentation. Bioresour Technol 216:941–947

    Article  CAS  PubMed  Google Scholar 

  • Courty P, Chauvel A (1996) The turntable for a clean future. Catal Today 29:3

    Article  CAS  Google Scholar 

  • Cromarty BJ, Tindall D (1994) ICI technical publication: H2 market review. Hydrocarbon Process Catal Sci 20:69

    Google Scholar 

  • Czernik PJ, Little JM, Barone GW, Raufman JP, Radominska-Pandya A (2000) Glucuronidation of estrogens and retinoic acid and expression of UDP-glucuronosyltransferase 2B7 in human intestinal mucosa. Drug Metab Dispos 28(10):1210–1216

    Google Scholar 

  • D'Adamo S, Jinkerson RE, Boyd ES, Brown SL, Baxter BK, Peters JW, Posewitz MC (2014) Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of Tetraselmis. PLoS One 9(1):85812

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046.57

    Article  Google Scholar 

  • Demirbas MF (2006) Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources 28(3):245–252

    Article  CAS  Google Scholar 

  • Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40(34):11094–11111

    Article  CAS  Google Scholar 

  • Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  CAS  PubMed  Google Scholar 

  • Eker S, Sarp M (2017) Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations. Int J Hydrog Energy 42:2562–2568

    Article  CAS  Google Scholar 

  • Eroglu E, Gunduz U, Yucel M, Eroglu I (2011) Effect of iron and molybdenum addition on photofermentative hydrogen production from olive mill wastewater. Int J Hydrog Energy 36:5895–5903

    Article  CAS  Google Scholar 

  • Evans RL (2007) Fueling our future: an introduction to sustainable energy, vol 19. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fayaz H, Saidur R, Razali N, Anuar FS, Saleman AR, Islam MR (2012) An overview of hydrogen as a vehicle fuel. Renew Sust Energy Rev 16:5511–5528

    Article  CAS  Google Scholar 

  • Florin NH, Harris AT (2008) Review enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem Eng Sci 63:287–316

    Article  CAS  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness P-C, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Dairkee UK, Chowdhury R, Bhattacharya P (2017) Hydrogen from food processing wastes via photofermentation using purple non-sulfur Bacteria (PNSB)-a review. Energy Convers Manag 141:299–314

    Article  CAS  Google Scholar 

  • Goswami Y (1986) Alternative energy in agriculture. Gasbook Biomass Gasification 2:83–102

    Google Scholar 

  • Gunawardana PVDS, Lee HC, Kim DH (2009) Performance of copper-ceria catalysts for water gas shift reaction in medium temperature range. Int J Hydrog Energy 34:1336–1341

    Article  CAS  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673

    Article  CAS  Google Scholar 

  • Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J (2014) The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem 289:1930–1937

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hidehiro S, Hajime M, Masaharu K, Kazuhito I (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobio C Photochem Rev 17:1–25

    Article  CAS  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    Article  CAS  Google Scholar 

  • Huang X, Ma L, Wainwright MS (2004) The influence of Cr, Zn and co additives on the performance of skeletal copper catalysts for methanol synthesis and related reactions. Appl Catal A Gen 257(2):235–243

    Article  CAS  Google Scholar 

  • Ibrahim D, Canan A (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111

    Article  CAS  Google Scholar 

  • Jeffrey RB, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrog Energy 35:8371–8384

    Article  CAS  Google Scholar 

  • Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrog Energy 37:3160–3168

    Article  CAS  Google Scholar 

  • Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55:427–443

    Article  Google Scholar 

  • Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy 34:8799–8817

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karapinar I, Yildiz PG, Pamuk RT, Gorgec FK (2020) The effect of hydraulic retention time on thermophilic dark fermentative biohydrogen production in the continuously operated packed bed bioreactor. Int J Hydrog Energy 45:3524–3531

    Article  CAS  Google Scholar 

  • Keskin A, Emiroglu AO (2010) Catalytic reduction techniques for post-combustion diesel engine exhaust emissions. Energy Educ Sci Technol Part A 25:87–103

    CAS  Google Scholar 

  • Khanna N, Lindblad P (2015) Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Molecul Sci 16:10537–10561

    Article  CAS  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A et al (2017) Microalgal hydrogen production: a review. Bioresour Technol 243:1194–1206

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Han SK, Kim SH, Shin HS (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrog Energy 31:2158–2169

    Article  CAS  Google Scholar 

  • Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431

    Article  CAS  PubMed  Google Scholar 

  • Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329

    Article  CAS  Google Scholar 

  • Koutrouli EK, Kalfas H, Gavala HN, Skiadas IV, Stamatelatou K, Lyberatos G (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100:3718–3723

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Park JH, Kim MS, Kim DH, Kim SH (2014) Hydrogen fermentation of different galactosee glucose compositions during various hydraulic retention times (HRTs). Int J Hydrog Energy 39:20625–20631

    Article  CAS  Google Scholar 

  • Lancaster KM, Roemelt M, Ettenhuber P, Hu YL, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laocharoen S, Reungsang A (2014) Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5. Int J Hydrog Energy 39:10870–10882

    Article  CAS  Google Scholar 

  • Lee KS, Tseng TS, Liu YW, Hsiao YD (2012) Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrog Energy 37:15556–15562

    Article  CAS  Google Scholar 

  • Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrog Energy 35:4962–4969

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  • Levin DB et al (2007) Potential for hydrogen and methane production from biomass residues in Canada. Bioresour Technol 98(3):654–660

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang YH, Zhang SL, Chu J, Zhang M, Huang MZ, Zhuang YP (2009) Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy-shaking and extra-light supplementation approach. Int J Hydrog Energy 34:9677–9685

    Article  CAS  Google Scholar 

  • Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 239:345–352

    Article  CAS  PubMed  Google Scholar 

  • Liu BF, Jin YR, Cui QF, Xie GJ, Wu YN, Ren NQ (2015) Photofermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated from the sludge in a bioreactor. Int J Hydrog Energy 40:8661–8668

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  CAS  PubMed  Google Scholar 

  • Lv P, Wu C, Ma L, Yuan Z (2008) A study on the economic efficiency of hydrogen production from biomass residues in China. Renew Energy 33:1874–1879

    Article  Google Scholar 

  • Malca J, Freire F (2006) Renewability and life-cycle energy efficiency of bio-ethanol and bio-ethyl tertiary butyl ether (bio-ETBE): assessing the implications of allocation. Energy 31:3362–3380

    Article  CAS  Google Scholar 

  • Marechal F, Favrat D, Jochem E (2005) Energy in the perspective of the sustainable development: the 2000 W society challenge. Res Conser Recycling 44:245–262

    Article  Google Scholar 

  • Marika EN, Chyi HL, Jaakko AP (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates: a review. Biomass Bioenergy 67:145–159

    Article  CAS  Google Scholar 

  • Marshall A, Sunde S, Tsypkin M, Tunold R (2007) Performance of a PEM water electrolysis cell using IrxRuyTazO2electocatalysts for the oxygen evolution electrode. Int J Hydrog Energy 32:2320–2324

    Article  CAS  Google Scholar 

  • Martin BA, Frymier PD (2017) A review of hydrogen production by photosynthetic organisms using whole-cell and cell-free systems. Appl Biochem Biotechnol 183:503–519

    Article  CAS  PubMed  Google Scholar 

  • Momirlana M, Veziroglu TN (2005) The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrog Energy 30:795–802

    Article  CAS  Google Scholar 

  • Moura P, Ortigueira J, Valdez-Vazquez I, Saratale GD, Saratale RG, Silva CM (2018) Dark fermentative hydrogen production: from concepts to a sustainable production. In: Microbial fuels: technologies and applications. Routledge, London, UK, pp 220–273

    Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72–ra72

    Google Scholar 

  • Nagarajan D, Lee DJ, Kondo A, Chang JS (2017) Recent insights into biohydrogen production by microalgae–from biophotolysis to dark fermentation. Bioresour Technol 227:373–387

    Article  CAS  Google Scholar 

  • Najafpour GD (2015) Biochemical engineering and biotechnology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Nguyen Tad HS, Kim JP, Kim MS, Sim SJ (2010) Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101:S38–S41

    Article  CAS  Google Scholar 

  • Ni M, Leung DY, Leung MK, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611

    Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14(7):1487–1499

    Google Scholar 

  • Parka JY, Kim BN, Kim YH, Min J (2018) Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity. J Biotechnol 288:9–14

    Article  CAS  Google Scholar 

  • Penniston J, Kana EBG (2018) Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol Biotechnol Equip 32:204–212

    Article  CAS  Google Scholar 

  • Pokorna E, Postelmans N, Jenicek P, Schreurs S, Carleer R, Yperman J (2009) Study of bio_oils and solids from flash pyrolysis of sewage sludges. Fuel 88:1344–1350

    Article  CAS  Google Scholar 

  • Richa K, Buddhi D, Sawhney RL (2004) Sources and technology for hydrogen production: a review. Int J Global Energy 21(1/2):154–178

    Article  Google Scholar 

  • Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Factories 11(1):1–18

    Google Scholar 

  • Rohland B, Nitsch J, Wendt H (1992) Hydrogen and fuel cells the clean energy system. J Power Sourc 37:271–277

    Google Scholar 

  • Sakurai H, Masukawa H, Kitashima M, Inoue K (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobio C 17:1–25

    Article  CAS  Google Scholar 

  • Salem AH, Brunstermann R, Mietzel T, Widmann R (2018) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrog Energy 43:4856–4865

    Article  CAS  Google Scholar 

  • Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sust Energ Rev 44:20–36

    Article  CAS  Google Scholar 

  • Scholz WH (1993) Processes for industrial production of hydrogen and associated environmental effects. Gas Sep Purif 7:131–139

    Article  CAS  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekoai PT, Daramola MO (2018) Effect of metal ions on dark fermentative biohydrogen production using suspended and immobilized cells of mixed bacteria. Chem Eng Commun 205:1011–1022

    Article  CAS  Google Scholar 

  • Sema ZB (2018) Hydrogen: a brief overview on its sources, production and environmental impact. Int J Hydrog Energy 43:10605–10614

    Article  CAS  Google Scholar 

  • Sheehan J, Cambreco V, Duffield J, Garboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles. A report by US Department of Agriculture and Energy, Washington, DC

    Google Scholar 

  • Si B, Li J, Li B, Zhu Z, Shen R, Zhang Y, Liu Z (2015) The role of hydraulic retention time on controlling methanogenesis and homoacetogenesis in biohydrogen production using upflow anaerobic sludge blanket (UASB) reactor and packed bed reactor (PBR). Int J Hydrog Energy 40:11414–11421

    Article  CAS  Google Scholar 

  • Silva JS, Mendes JS, Correia JAC, Rocha MVP, Micoli L (2018) Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process. J Biotechnol 286:71–78

    Article  CAS  PubMed  Google Scholar 

  • Simonsen KA, OKeefe L, Fong WF (1993) Changing fuel formulations will boost hydrogen demand. Oil Gas J 91:45–58

    CAS  Google Scholar 

  • Singh L, Wahid ZA (2015) Methods for enhancing bio-hydrogen production from biological process: a review. J Ind Eng Chem 21:70–80

    Article  CAS  Google Scholar 

  • Srivastava N, Srivastava M, Malhotra BD, Guptad VK, Ramteke PW, Silva RN, Shukla P, Dubey KK, Mishra PK (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37:107384

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, He J, Yang G, Sun G, Sage V (2019) A review of the enhancement of bio-hydrogen generation by chemicals addition. Catalysts 9:353

    Article  CAS  Google Scholar 

  • Taylor PG et al (2017) Better energy indicators for sustainable development. Nat Energy 2(8):1–4

    Article  Google Scholar 

  • Tomczak W, Ferrasse JH, Giudici-Orticoni MT, Soric A (2018) Effect of hydraulic retention time on a continuous biohydrogen production in a packed bed biofilm reactor with recirculation flow of the liquid phase. Int J Hydrog Energy 43:18883–18895

    Article  CAS  Google Scholar 

  • Valdez I, Rios-Leal E, Esparza-Garcı’a F, Cecchi F, Poggi-Varaldo HM (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrog Energy 30:1383–1391

    Article  CAS  Google Scholar 

  • Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Article  Google Scholar 

  • Wua TW, Hay JXW, Kong LB, Juan JC, JMD J (2012) Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renew Sust Energ Rev 16:3117–3122

    Article  CAS  Google Scholar 

  • Yang G, Wang J (2017) Enhanced hydrogen production from sewage sludge by co-fermentation with forestry wastes. Energy Fuel 31:9633–9641

    Article  CAS  Google Scholar 

  • Yang H, Ma H, Shi B, Li L, Yan W (2016) Experimental study of the effects of heavy metal ions on the hydrogen production performance of Rhodobacter sphaeroides HY01. Int J Hydrog Energy 41:10631–10638

    Article  CAS  Google Scholar 

  • Yildiz K, Arif H, Ibrahim D (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy 34:8799–8817

    Article  CAS  Google Scholar 

  • Yuchen G, Jianguo J, Yuan M, Feng Y, Aikelaimu A (2018) A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag 171:133–155

    Article  CAS  Google Scholar 

  • Zhang J (2012) Pyrolysis of biomass. University of Mississippi State, Mater thesis, 1996. Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Factories 11:115

    CAS  Google Scholar 

  • Zhu H, Fang HHP, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32:4112–4118

    Article  CAS  Google Scholar 

  • Ziara RMM et al (2019) Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int J Hydrog Energy 44(2):661–673

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank IIT (BHU), Varanasi and National Project Implementation Unit & TEQIP-III and MHRD, Government of India, for their financial support. The authors also cordially thank the anonymous reviewers for their critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, D.B., Tiwari, A.K. (2021). Hydrogen Production by Utilizing Bio-Processing Techniques. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Biomass Waste to Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1862-8_7

Download citation

Publish with us

Policies and ethics