Skip to main content

Technological Advances in Radiotherapy

  • Chapter
  • First Online:
Radiotherapy of Liver Cancer
  • 597 Accesses

Abstract

Radiation therapy, a highly effective treatment modality for hepatocellular carcinoma, is underutilized due to challenges posed by radiosensitivity of the non-tumor-bearing liver, movement of the liver with respiration, and the poor definition of the tumor edge on many occasions. Nonetheless, technological advances have improved our ability to safely target tumors in the liver while sparing adjacent normal liver and gastrointestinal mucosa, thereby making increasing numbers of patients with liver tumors amenable to radiation therapy with curative intent. This transition from the era of two- and three-dimensional radiation therapy to the modern era of radiotherapy was catalyzed by the advent of intensity-modulated radiation therapy (IMRT), stereotactic body radiation therapy (SBRT), image-guided radiation therapy (IGRT), and charged particle therapy resulting in a resurgence of interest in radiation therapy for liver tumors. We outline the technological advances that are at the vanguard of this renewed interest and the associated improved outcomes seen with radiation therapy for liver tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Delis SG, Dervenis C. Selection criteria for liver resection in patients with hepatocellular carcinoma and chronic liver disease. World J Gastroenterol. 2008;14(22):3452–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Couto OF, Dvorchik I, Carr BI. Causes of death in patients with unresectable hepatocellular carcinoma. Dig Dis Sci. 2007;52(11):3285–9.

    Article  CAS  PubMed  Google Scholar 

  4. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31(5):1237–48.

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Josef E, Normolle D, Ensminger WD, Walker S, Tatro D, Haken RKT, et al. Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2005;23(34):8739–47.

    Article  PubMed  Google Scholar 

  6. Mornex F, Girard N, Beziat C, Kubas A, Khodri M, Trepo C, et al. Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies—mature results of the French Phase II RTF-1 trial. Int J Radiat Oncol Biol Phys. 2006;66(4):1152–8.

    Article  PubMed  Google Scholar 

  7. Yoon HI, Lee IJ, Han KH, Seong J. Improved oncologic outcomes with image-guided intensity-modulated radiation therapy using helical tomotherapy in locally advanced hepatocellular carcinoma. J Cancer Res Clin Oncol. 2014;140(9):1595–605.

    Article  CAS  PubMed  Google Scholar 

  8. Hou JZ, Zeng ZC, Wang BL, Yang P, Zhang JY, Mo HF. High dose radiotherapy with image-guided hypo-IMRT for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombi is more feasible and efficacious than conventional 3D-CRT. Jpn J Clin Oncol. 2016;46(4):357–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Forner A, Vilana R, Ayuso C, Bianchi L, Solé M, Ayuso JR, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology (Baltimore, MD). 2008;47(1):97–104.

    Article  Google Scholar 

  10. Voroney JP, Brock KK, Eccles C, Haider M, Dawson LA. Prospective comparison of computed tomography and magnetic resonance imaging for liver cancer delineation using deformable image registration. Int J Radiat Oncol Biol Phys. 2006;66(3):780–91.

    Article  PubMed  Google Scholar 

  11. Wang H, Krishnan S, Wang X, Beddar AS, Briere TM, Crane CH, et al. Improving soft-tissue contrast in four-dimensional computed tomography images of liver cancer patients using a deformable image registration method. Int J Radiat Oncol Biol Phys. 2008;72(1):201–9.

    Article  PubMed  Google Scholar 

  12. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    Article  PubMed  Google Scholar 

  13. Tsai YL, Wu CJ, Shaw S, Yu PC, Nien HH, Lui LT. Quantitative analysis of respiration-induced motion of each liver segment with helical computed tomography and 4-dimensional computed tomography. Radiat Oncol (London, Engl). 2018;13(1):59.

    Article  Google Scholar 

  14. Oh SA, Yea JW, Kim SK, Park JW. Optimal gating window for respiratory-gated radiotherapy with real-time position management and respiration guiding system for liver cancer treatment. Sci Rep. 2019;9(1):4384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eccles C, Brock KK, Bissonnette JP, Hawkins M, Dawson LA. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006;64(3):751–9.

    Article  PubMed  Google Scholar 

  16. Herfarth KK, Debus J, Lohr F, Bahner ML, Fritz P, Höss A, et al. Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys. 2000;46(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  17. Wagman R, Yorke E, Ford E, Giraud P, Mageras G, Minsky B, et al. Respiratory gating for liver tumors: use in dose escalation. Int J Radiat Oncol Biol Phys. 2003;55(3):659–68.

    Article  PubMed  Google Scholar 

  18. Beddar AS, Kainz K, Briere TM, Tsunashima Y, Pan T, Prado K, et al. Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT. Int J Radiat Oncol Biol Phys. 2007;67(2):630–8.

    Article  PubMed  Google Scholar 

  19. Park SH, Won HJ, Kim SY, Shin YM, Kim PN, Yoon SM, et al. Efficacy and safety of ultrasound-guided implantation of fiducial markers in the liver for stereotactic body radiation therapy. PLoS One. 2017;12(6):e0179676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hawkins MA, Brock KK, Eccles C, Moseley D, Jaffray D, Dawson LA. Assessment of residual error in liver position using kV cone-beam computed tomography for liver cancer high-precision radiation therapy. Int J Radiat Oncol Biol Phys. 2006;66(2):610–9.

    Article  PubMed  Google Scholar 

  21. Yang J, Cai J, Wang H, Chang Z, Czito BG, Bashir MR, et al. Is diaphragm motion a good surrogate for liver tumor motion? Int J Radiat Oncol Biol Phys. 2014;90(4):952–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fahmi S, Simonis FFJ, Abayazid M. Respiratory motion estimation of the liver with abdominal motion as a surrogate. Int J Med Robot. 2018;14(6):e1940.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seiler PG, Blattmann H, Kirsch S, Muench RK, Schilling C. A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy. Phys Med Biol. 2000;45(9):N103–10.

    Article  CAS  PubMed  Google Scholar 

  24. Balter JM, Wright JN, Newell LJ, Friemel B, Dimmer S, Cheng Y, et al. Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61(3):933–7.

    Article  PubMed  Google Scholar 

  25. Eccles CL, Tse RV, Hawkins MA, Lee MT, Moseley DJ, Dawson LA. Intravenous contrast-enhanced cone beam computed tomography (IVCBCT) of intrahepatic tumors and vessels. Adv Radiat Oncol. 2016;1(1):43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schernthaner RE, Haroun RR, Duran R, Lee H, Sahu S, Sohn JH, et al. Improved visibility of metastatic disease in the liver during intra-arterial therapy using delayed arterial phase cone-beam CT. Cardiovasc Intervent Radiol. 2016;39(10):1429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Price RG, Apisarnthanarax S, Schaub SK, Nyflot MJ, Chapman TR, Matesan M, et al. Regional radiation dose-response modeling of functional liver in hepatocellular carcinoma patients with longitudinal sulfur colloid SPECT/CT: a proof of concept. Int J Radiat Oncol Biol Phys. 2018;102(4):1349–56.

    Article  PubMed  Google Scholar 

  28. Schaub SK, Apisarnthanarax S, Price RG, Nyflot MJ, Chapman TR, Matesan M, et al. Functional liver imaging and dosimetry to predict hepatotoxicity risk in cirrhotic patients with primary liver cancer. Int J Radiat Oncol Biol Phys. 2018;102(4):1339–48.

    Article  PubMed  Google Scholar 

  29. Qi WX, Fu S, Zhang Q, Guo XM. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Radiother Oncol. 2015;114(3):289–95.

    Article  PubMed  Google Scholar 

  30. Yoon SM, Ryoo BY, Lee SJ, Kim JH, Shin JH, An JH, et al. Efficacy and safety of transarterial chemoembolization plus external beam radiotherapy vs sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: a randomized clinical trial. JAMA Oncol. 2018;4(5):661–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306–10.

    Article  CAS  PubMed  Google Scholar 

  32. Wen N, Kim J, Doemer A, Glide-Hurst C, Chetty IJ, Liu C, et al. Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol J Eur Soc Therap Radiol Oncol. 2018;127(3):460–6.

    Article  Google Scholar 

  33. Fast M, van de Schoot A, van de Lindt T, Carbaat C, van der Heide U, Sonke JJ. Tumor trailing for liver SBRT on the MR-linac. Int J Radiat Oncol Biol Phys. 2019;103(2):468–78.

    Article  PubMed  Google Scholar 

  34. Feldman AM, Modh A, Glide-Hurst C, Chetty IJ, Movsas B. Real-time magnetic resonance-guided liver stereotactic body radiation therapy: an institutional report using a magnetic resonance-linac system. Cureus. 2019;11(9):e5774.

    PubMed  PubMed Central  Google Scholar 

  35. Newhauser WD, Zhang R. The physics of proton therapy. Phys Med Biol. 2015;60(8):R155–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Munoz-Schuffenegger P, Ng S, Dawson LA. Radiation-induced liver toxicity. Semin Radiat Oncol. 2017;27(4):350–7.

    Article  PubMed  Google Scholar 

  37. Dionisi F, Widesott L, Lorentini S, Amichetti M. Is there a role for proton therapy in the treatment of hepatocellular carcinoma? A systematic review. Radiother Oncol. 2014;111(1):1–10.

    Article  PubMed  Google Scholar 

  38. Skinner HD, Hong TS, Krishnan S. Charged-particle therapy for hepatocellular carcinoma. Semin Radiat Oncol. 2011;21(4):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Langen K, Zhu M. Concepts of PTV and robustness in passively scattered and pencil beam scanning proton therapy. Semin Radiat Oncol. 2018;28(3):248–55.

    Article  PubMed  Google Scholar 

  40. Fukumitsu N, Sugahara S, Nakayama H, Fukuda K, Mizumoto M, Abei M, et al. A prospective study of hypofractionated proton beam therapy for patients with hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2009;74(3):831–6.

    Article  PubMed  Google Scholar 

  41. Bush DA, Kayali Z, Grove R, Slater JD. The safety and efficacy of high-dose proton beam radiotherapy for hepatocellular carcinoma: a phase 2 prospective trial. Cancer. 2011;117(13):3053–9.

    Article  PubMed  Google Scholar 

  42. Hong TS, Wo JY, Yeap BY, Ben-Josef E, McDonnell EI, Blaszkowsky LS, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2016;34(5):460–8.

    Article  CAS  PubMed  Google Scholar 

  43. Robbins JR, Schmid RK, Hammad AY, Gamblin TC, Erickson BA. Stereotactic body radiation therapy for hepatocellular carcinoma: practice patterns, dose selection and factors impacting survival. Cancer Med. 2019;8(3):928–38.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Holliday EB, Tao R, Brownlee Z, Das P, Krishnan S, Taniguchi C, et al. Definitive radiation therapy for hepatocellular carcinoma with portal vein tumor thrombus. Clin Transl Radiat Oncol. 2017;4:39–45.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lausch A, Sinclair K, Lock M, Fisher B, Jensen N, Gaede S, et al. Determination and comparison of radiotherapy dose responses for hepatocellular carcinoma and metastatic colorectal liver tumours. Br J Radiol. 2013;86(1027):20130147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jang WI, Kim M-S, Bae SH, Cho CK, Yoo HJ, Seo YS, et al. High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol. 2013;8(1):250.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Scorsetti M, Comito T, Cozzi L, Clerici E, Tozzi A, Franzese C, et al. The challenge of inoperable hepatocellular carcinoma (HCC): results of a single-institutional experience on stereotactic body radiation therapy (SBRT). J Cancer Res Clin Oncol. 2015;141(7):1301–9.

    Article  CAS  PubMed  Google Scholar 

  48. Chadha AS, Gunther JR, Hsieh CE, Aliru M, Mahadevan LS, Venkatesulu BP, et al. Proton beam therapy outcomes for localized unresectable hepatocellular carcinoma. Radiother Oncol J Eur Soc Therap Radiol Oncol. 2019;133:54–61.

    Article  Google Scholar 

  49. Pursley J, El Naqa I, Sanford NN, Noe B, Wo JY, Eyler CE, et al. Dosimetric analysis and normal tissue complication probability modeling of Child-Pugh score and Albumin-Bilirubin grade increase after hepatic irradiation. Int J Radiat Oncol Biol Phys. 2020;107(5):986–95.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Son SH, Kay CS, Song JH, Lee S-W, Choi BO, Kang YN, et al. Dosimetric parameter predicting the deterioration of hepatic function after helical tomotherapy in patients with unresectable locally advanced hepatocellular carcinoma. Radiat Oncol. 2013;8(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94–S100.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hsieh C-E, Venkatesulu BP, Lee C-H, Hung S-P, Wong P-F, Aithala SP, et al. Predictors of radiation-induced liver disease in eastern and western patients with hepatocellular carcinoma undergoing proton beam therapy. Int J Radiat Oncol Biol Phys. 2019;105:73–86.

    Article  PubMed  Google Scholar 

  53. Gandhi SJ, Liang X, Ding X, Zhu TC, Ben-Josef E, Plastaras JP, et al. Clinical decision tool for optimal delivery of liver stereotactic body radiation therapy: Photons versus protons. Pract Radiat Oncol. 2015;5(4):209–18.

    Article  PubMed  Google Scholar 

  54. Toramatsu C, Katoh N, Shimizu S, Nihongi H, Matsuura T, Takao S, et al. What is the appropriate size criterion for proton radiotherapy for hepatocellular carcinoma? A dosimetric comparison of spot-scanning proton therapy versus intensity-modulated radiation therapy. Radiat Oncol (London, Engl). 2013;8:48.

    Article  Google Scholar 

  55. Wang X, Krishnan S, Zhang X, Dong L, Briere T, Crane CH, et al. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim. 2008;33(4):259–67.

    Article  PubMed  Google Scholar 

  56. Sanford NN, Pursley J, Noe B, Yeap BY, Goyal L, Clark JW, et al. Protons versus photons for unresectable hepatocellular carcinoma: liver decompensation and overall survival. Int J Radiat Oncol Biol Phys. 2019;105(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  57. Hasan S, Abel S, Verma V, Webster P, Arscott WT, Wegner RE, et al. Proton beam therapy versus stereotactic body radiotherapy for hepatocellular carcinoma: practice patterns, outcomes, and the effect of biologically effective dose escalation. J Gastrointest Oncol. 2019;10(5):999–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tao R, Krishnan S, Bhosale PR, Javle MM, Aloia TA, Shroff RT, et al. Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(3):219–26.

    Article  CAS  Google Scholar 

  59. Hung S-P, Huang B-S, Hsieh C-E, Lee C-H, Tsang N-M, Chang JT-C, et al. Clinical outcomes of patients with unresectable cholangiocarcinoma treated with proton beam therapy. Am J Clin Oncol. 2020;43(3):180–6.

    Article  PubMed  Google Scholar 

  60. Makita C, Nakamura T, Takada A, Takayama K, Suzuki M, Ishikawa Y, et al. Clinical outcomes and toxicity of proton beam therapy for advanced cholangiocarcinoma. Radiat Oncol. 2014;9(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ohkawa A, Mizumoto M, Ishikawa H, Abei M, Fukuda K, Hashimoto T, et al. Proton beam therapy for unresectable intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol. 2015;30(5):957–63.

    Article  PubMed  Google Scholar 

  62. Hong TS, Wo JY, Borger DR, Yeap BY, McDonnell EI, Willers H, et al. Phase II study of proton-based stereotactic body radiation therapy for liver metastases: importance of tumor genotype. J Natl Cancer Inst, 2017. 109(9) https://doi.org/10.1093/jnci/djx031.

  63. Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(10):1585–91.

    Article  Google Scholar 

  64. Komatsu S, Fukumoto T, Demizu Y, Miyawaki D, Terashima K, Sasaki R, et al. Clinical results and risk factors of proton and carbon ion therapy for hepatocellular carcinoma. Cancer. 2011;117(21):4890–904.

    Article  CAS  PubMed  Google Scholar 

  65. Nakayama H, Sugahara S, Tokita M, Fukuda K, Mizumoto M, Abei M, et al. Proton beam therapy for hepatocellular carcinoma: the University of Tsukuba experience. Cancer. 2009;115(23):5499–506.

    Article  PubMed  Google Scholar 

  66. Kawashima M, Kohno R, Nakachi K, Nishio T, Mitsunaga S, Ikeda M, et al. Dose-volume histogram analysis of the safety of proton beam therapy for unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2011;79(5):1479–86.

    Article  PubMed  Google Scholar 

  67. Fukumitsu N, Okumura T, Takizawa D, Numajiri H, Ohnishi K, Mizumoto M, et al. Proton beam therapy for liver metastases from gastric cancer. J Radiat Res. 2017;58(3):357–62.

    Article  PubMed  Google Scholar 

  68. Moreno AC, Frank SJ, Garden AS, Rosenthal DI, Fuller CD, Gunn GB, et al. Intensity modulated proton therapy (IMPT) – The future of IMRT for head and neck cancer. Oral Oncol. 2019;88:66–74.

    Article  PubMed  Google Scholar 

  69. Pugh TJ, Amos RA, John Baptiste S, Choi S, Nhu Nguyen Q, Ronald Zhu X, et al. Multifield optimization intensity-modulated proton therapy (MFO-IMPT) for prostate cancer: robustness analysis through simulation of rotational and translational alignment errors. Med Dosim. 2013;38(3):344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Park PC, Zhu XR, Lee AK, Sahoo N, Melancon AD, Zhang L, et al. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys. 2012;82(2):e329–e36.

    Article  PubMed  Google Scholar 

  71. Grassberger C, Dowdell S, Lomax A, Sharp G, Shackleford J, Choi N, et al. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2013;86(2):380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Knopf A-C, Lomax AJ. In the context of radiosurgery – pros and cons of rescanning as a solution for treating moving targets with scanned particle beams. Phys Med. 2014;30(5):551–4.

    Article  PubMed  Google Scholar 

  73. Dolde K, Zhang Y, Chaudhri N, Dávid C, Kachelrieß M, Lomax AJ, et al. 4DMRI-based investigation on the interplay effect for pencil beam scanning proton therapy of pancreatic cancer patients. Radiat Oncol. 2019;14(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yoo GS, Yu JI, Cho S, Jung SH, Han Y, Park S, et al. Comparison of clinical outcomes between passive scattering versus pencil-beam scanning proton beam therapy for hepatocellular carcinoma. Radiother Oncol. 2020;146:187–93.

    Article  CAS  PubMed  Google Scholar 

  75. Dionisi F, Brolese A, Siniscalchi B, Giacomelli I, Fracchiolla F, Righetto R, et al. Clinical results of active scanning proton therapy for primary liver tumors. Tumori J. 2020; https://doi.org/10.1177/0300891620937809.

  76. Akino Y, Wu H, Oh R-J, Das IJ. An effective method to reduce the interplay effects between respiratory motion and a uniform scanning proton beam irradiation for liver tumors: a case study. J Appl Clin Med Phys. 2019;20(1):220–8.

    Article  PubMed  Google Scholar 

  77. Lambert J, Suchowerska N, McKenzie DR, Jackson M. Intrafractional motion during proton beam scanning. Phys Med Biol. 2005;50(20):4853–62.

    Article  CAS  PubMed  Google Scholar 

  78. Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. Comparing photon and charged particle therapy using DNA damage biomarkers. Int J Part Ther. 2018;5(1):15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ebner DK, Tsuji H, Yasuda S, Yamamoto N, Mori S, Kamada T. Respiration-gated fast-rescanning carbon-ion radiotherapy. Jpn J Clin Oncol. 2017;47(1):80–3.

    Article  PubMed  Google Scholar 

  80. Zeitlin C, La Tessa C. The role of nuclear fragmentation in particle therapy and space radiation protection. Front Oncol. 2016;6:65.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tsujii H, Kamada T. A review of update clinical results of carbon ion radiotherapy. Jpn J Clin Oncol. 2012;42(8):670–85.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 2017;63(1):01TR02.

    Article  PubMed  CAS  Google Scholar 

  83. Choi J, Kang JO. Basics of particle therapy II: relative biological effectiveness. Radiat Oncol J. 2012;30(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mohamad O, Makishima H, Kamada T. Evolution of carbon ion radiotherapy at the national institute of radiological sciences in Japan. Cancers (Basel). 2018;10(3):66.

    Article  CAS  Google Scholar 

  85. Fossati P, Matsufuji N, Kamada T, Karger CP. Radiobiological issues in prospective carbon ion therapy trials. Med Phys. 2018;45(11):e1096–e110.

    Article  CAS  PubMed  Google Scholar 

  86. Fossati P, Molinelli S, Matsufuji N, Ciocca M, Mirandola A, Mairani A, et al. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012;57:7543–54.

    Article  PubMed  Google Scholar 

  87. Kagawa K, Murakami M, Hishikawa Y, Abe M, Akagi T, Yanou T, et al. Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. Int J Radiat Oncol Biol Phys. 2002;54:928–38.

    Article  PubMed  Google Scholar 

  88. Wang W, Huang Z, Sheng Y, Zhao J, Shahnazi K, Zhang Q, et al. RBE-weighted dose conversions for carbon ionradiotherapy between microdosimetric kinetic model and local effect model for the targets and organs at risk in prostate carcinoma. Radiother Oncol. 2020;144:30–6.

    Article  CAS  PubMed  Google Scholar 

  89. Yasuda S, Kato H, Imada H, Isozaki Y, Kasuya G, Makishima H, et al. Long-term results of high-dose 2-fraction carbon ion radiation therapy for hepatocellular carcinoma. Adv Radiat Oncol. 2020;5(2):196–203.

    Article  PubMed  Google Scholar 

  90. Shiba S, Shibuya K, Kawashima M, Okano N, Kaminuma T, Okamoto M, et al. Comparison of dose distributions when using carbon ion radiotherapy versus intensity-modulated radiotherapy for hepatocellular carcinoma with macroscopic vascular invasion: a retrospective analysis. Anticancer Res. 2020;40(1):459–64.

    Article  CAS  PubMed  Google Scholar 

  91. Abe T, Saitoh J-I, Kobayashi D, Shibuya K, Koyama Y, Shimada H, et al. Dosimetric comparison of carbon ion radiotherapy and stereotactic body radiotherapy with photon beams for the treatment of hepatocellular carcinoma. Radiat Oncol (London, Engl). 2015;10:187.

    Article  CAS  Google Scholar 

  92. Hsu C-Y, Wang C-W, Cheng A-L, Kuo S-H. Hypofractionated particle beam therapy for hepatocellular carcinoma: a brief review of clinical effectiveness. World J Gastrointest Oncol. 2019;11(8):579–88.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kasuya G, Kato H, Yasuda S, Tsuji H, Yamada S, Haruyama Y, et al. Progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma: combined analyses of 2 prospective trials. Cancer. 2017;123(20):3955–65.

    Article  CAS  PubMed  Google Scholar 

  94. Kato H, Tsujii H, Miyamoto T, Mizoe J-E, Kamada T, Tsuji H, et al. Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int J Radiat Oncol Biol Phys. 2004;59(5):1468–76.

    Article  PubMed  Google Scholar 

  95. Shibuya K, Ohno T, Katoh H, Okamoto M, Shiba S, Koyama Y, et al. A feasibility study of high-dose hypofractionated carbon ion radiation therapy using four fractions for localized hepatocellular carcinoma measuring 3 cm or larger. Radiother Oncol. 2019;132:230–5.

    Article  CAS  PubMed  Google Scholar 

  96. Shibuya K, Ohno T, Terashima K, Toyama S, Yasuda S, Tsuji H, et al. Short-course carbon-ion radiotherapy for hepatocellular carcinoma: a multi-institutional retrospective study. Liver Int. 2018;38(12):2239–47.

    Article  CAS  PubMed  Google Scholar 

  97. Imada H, Kato H, Yasuda S, Yamada S, Yanagi T, Kishimoto R, et al. Comparison of efficacy and toxicity of short-course carbon ion radiotherapy for hepatocellular carcinoma depending on their proximity to the porta hepatis. Radiother Oncol. 2010;96(2):231–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abousaida, B., Hsieh, Ce., Venkatesulu, B.P., Krishnan, S. (2021). Technological Advances in Radiotherapy. In: Seong, J. (eds) Radiotherapy of Liver Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-16-1815-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1815-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1814-7

  • Online ISBN: 978-981-16-1815-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics