Skip to main content

Radiobiology of the Liver

  • Chapter
  • First Online:
Radiotherapy of Liver Cancer
  • 585 Accesses

Abstract

Advancements in imaging and radiation treatment planning have resulted in the increasing use of radiation therapy (RT) for liver cancer. However, Radiation-induced liver disease (RILD) remains a major limitation of RT. The pathophysiology, diagnosis, and treatment of RILD are discussed in this chapter. Classic RILD manifests with hepatomegaly, anicteric ascites, and thrombocytopenia, and alkaline phosphatase elevated out of proportion to other liver enzymes, 1–3 months after liver RT. The pathological hallmark is that of veno-occlusive disease (VOD) and sinusoidal obstructive syndrome (SOS). In addition to endothelial cell damage, hepatic stellate cell activation is noted in patients with severe congestive changes of classic RILD. There are multiple clinically useful tools, such as Model for End-Stage Liver Disease (MELD), Child–Turcotte–Pugh (CTP) classification, ALBI and PALBI grades to quantify liver function changes following RT. Other more interventional laboratory measures that have been investigated to measure liver function include Indocyanine green (ICG) and HepQuant SHUNT test that require administration of ICG or cholate and measuring their clearance rates. Potential biomarkers of liver toxicity include those related to endothelial injury and increased expression of adhesion molecules, pro-inflammatory and procoagulant cytokines. In patients suspected of developing classic RILD, early diagnosis and intervention can potentially improve outcomes. Baseline and serial imaging using ultrasound, portal venous perfusion imaging by dynamic contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI) may help detect early signs suggestive of VOD/SOS and more importantly to exclude diagnoses other than VOD/SOS. The current management of RILD is mostly supportive with no approved pharmacologic therapy to date. Strategies to potentially treat RILD including TGFβ inhibition, Hedgehog inhibition, CXCR4 inhibition, hepatocyte transplantation, and bone marrow-derived stromal cell therapy are currently under investigation. Taking advantage of radiation as an immunomodulatory drug for in situ tumor vaccination provides the rationale for combining SBRT with immunotherapy for the treatment of liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan HS, Bagshaw MA. Radiation hepatitis: possible prevention by combined isotopic and external radiation therapy. Radiology. 1968;91(6):1214–20.

    Article  CAS  PubMed  Google Scholar 

  2. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Therapy, Nucl Med. 1965;93:200–8.

    CAS  Google Scholar 

  3. Borgelt BB, Gelber R, Brady LW, Griffin T, Hendrickson FR. The palliation of hepatic metastases: results of the radiation therapy oncology group pilot study. Int J Radiat Oncol Biol Phys. 1981;7(5):587–91.

    Article  CAS  PubMed  Google Scholar 

  4. Russell AH, Clyde C, Wasserman TH, Turner SS, Rotman M. Accelerated hyperfractionated hepatic irradiation in the management of patients with liver metastases: results of the RTOG dose escalating protocol. Int J Radiat Oncol Biol Phys. 1993;27(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  5. Stillwagon GB, Order SE, Guse C, Klein JL, Leichner PK, Leibel SA, et al. 194 hepatocellular cancers treated by radiation and chemotherapy combinations: toxicity and response: a radiation therapy oncology group study. Int J Radiat Oncol Biol Phys. 1989;17(6):1223–9.

    Article  CAS  PubMed  Google Scholar 

  6. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  7. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53(4):810–21.

    Article  PubMed  Google Scholar 

  8. Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94–100.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ohri N, Tome WA, Mendez Romero A, Miften M, Ten Haken RK, Dawson LA, et al. Local control after stereotactic body radiation therapy for liver tumors. Int J Radiat Oncol Biol Phys. 2018; https://doi.org/10.1016/j.ijrobp.2017.12.288.

  10. Mahadevan A, Blanck O, Lanciano R, Peddada A, Sundararaman S, D’Ambrosio D, et al. Stereotactic body radiotherapy (SBRT) for liver metastasis - clinical outcomes from the international multi-institutional RSSearch® patient registry. Radiat Oncol. 2018;13(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Herfarth KK, Debus J, Lohr F, Bahner ML, Rhein B, Fritz P, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol. 2001;19(1):164–70.

    Article  CAS  PubMed  Google Scholar 

  12. Hoyer M, Roed H, Traberg Hansen A, Ohlhuis L, Petersen J, Nellemann H, et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006;45(7):823–30.

    Article  PubMed  Google Scholar 

  13. Mendez Romero A, Wunderink W, Hussain SM, De Pooter JA, Heijmen BJ, Nowak PC, et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase i-ii study. Acta Oncol. 2006;45(7):831–7.

    Article  PubMed  Google Scholar 

  14. Schefter TE, Kavanagh BD, Timmerman RD, Cardenes HR, Baron A, Gaspar LE. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62(5):1371–8.

    Article  PubMed  Google Scholar 

  15. Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8.

    Article  PubMed  Google Scholar 

  16. Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009;27(10):1585–91.

    Article  PubMed  Google Scholar 

  17. Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G, et al. Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010;78(2):486–93.

    Article  PubMed  Google Scholar 

  18. Scorsetti M, Arcangeli S, Tozzi A, Comito T, Alongi F, Navarria P, et al. Is stereotactic body radiation therapy an attractive option for unresectable liver metastases? A preliminary report from a phase 2 trial. Int J Radiat Oncol Biol Phys. 2013;86(2):336–42.

    Article  PubMed  Google Scholar 

  19. Ambrosino G, Polistina F, Costantin G, Francescon P, Guglielmi R, Zanco P, et al. Image-guided robotic stereotactic radiosurgery for unresectable liver metastases: preliminary results. Anticancer Res. 2009;29(8):3381–4.

    PubMed  Google Scholar 

  20. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622):1155–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lee Y, Auh SL, Wang Y, Burnette B, Meng Y, Beckett M, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21(16):3727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawashita Y, Deb NJ, Garg M, Kabarriti R, Alfieri A, Takahashi M, et al. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 1. Flt3 ligand gene transfer increases antitumor effects of a radio-inducible suicide gene therapy in an ectopic tumor model. Radiat Res. 2014;182(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  24. Kawashita Y, Deb NJ, Garg MK, Kabarriti R, Fan Z, Alfieri AA, et al. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model. Radiat Res. 2014;182(2):201–10.

    Article  CAS  PubMed  Google Scholar 

  25. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31(5):1237–48.

    Article  CAS  PubMed  Google Scholar 

  26. Ogata K, Hizawa K, Yoshida M, Kitamuro T, Akagi G, Kagawa K, et al. Hepatic injury following irradiation: a morphologic study. Tokushima J Exp Med. 1963;43:240–51.

    Google Scholar 

  27. Reed GB Jr, Cox AJ Jr. The human liver after radiation injury. A form of veno-occlusive disease. Am J Pathol. 1966;48(4):597–611.

    PubMed  PubMed Central  Google Scholar 

  28. DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis. 2002;22(1):27–42.

    Article  PubMed  Google Scholar 

  29. Sempoux C, Horsmans Y, Geubel A, Fraikin J, Van Beers BE, Gigot JF, et al. Severe radiation-induced liver disease following localized radiation therapy for biliopancreatic carcinoma: activation of hepatic stellate cells as an early event. Hepatology. 1997;26(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  30. Anscher MS, Crocker IR, Jirtle RL. Transforming growth factor-beta 1 expression in irradiated liver. Radiat Res. 1990;122(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  31. Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL. Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med. 1993;328(22):1592–8.

    Article  CAS  PubMed  Google Scholar 

  32. Guha C, Kavanagh BD. Hepatic radiation toxicity: avoidance and amelioration. Semin Radiat Oncol. 2011;21(4):256–63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheng JC, Wu JK, Lee PC, Liu HS, Jian JJ, Lin YM, et al. Biologic susceptibility of hepatocellular carcinoma patients treated with radiotherapy to radiation-induced liver disease. Int J Radiat Oncol Biol Phys. 2004;60(5):1502–9.

    Article  PubMed  Google Scholar 

  34. Guha C, Sharma A, Gupta S, Alfieri A, Gorla GR, Gagandeep S, et al. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation. Cancer Res. 1999;59(23):5871–4.

    CAS  PubMed  Google Scholar 

  35. Kim JH, Park JW, Kim TH, Koh DW, Lee WJ, Kim CM. Hepatitis B virus reactivation after three-dimensional conformal radiotherapy in patients with hepatitis B virus-related hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2007;69(3):813–9.

    Article  PubMed  Google Scholar 

  36. Chou CH, Chen PJ, Lee PH, Cheng AL, Hsu HC, Cheng JC. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin Cancer Res. 2007;13(3):851–7.

    Article  CAS  PubMed  Google Scholar 

  37. Miften M, Vinogradskiy Y, Moiseenko V, Grimm J, Yorke E, Jackson A, et al. Radiation dose-volume effects for liver SBRT. Int J Radiat Oncol Biol Phys. 2018; https://doi.org/10.1016/j.ijrobp.2017.12.290.

  38. Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31(13):1631–9.

    Article  PubMed  Google Scholar 

  39. Andolino DL, Johnson CS, Maluccio M, Kwo P, Tector AJ, Zook J, et al. Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2011;81(4):e447–53.

    Article  PubMed  Google Scholar 

  40. Su TS, Luo R, Liang P, Cheng T, Zhou Y, Huang Y. A prospective cohort study of hepatic toxicity after stereotactic body radiation therapy for hepatocellular carcinoma. Radiother Oncol. 2018;129(1):136–42.

    Article  PubMed  Google Scholar 

  41. Hasan S, Thai N, Uemura T, Kudithipudi V, Renz P, Abel S, et al. Hepatocellular carcinoma with child Pugh-a cirrhosis treated with stereotactic body radiotherapy. World J Gastrointest Surg. 2017;9(12):256–63.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nabavizadeh N, Waller JG, Fain R 3rd, Chen Y, Degnin CR, Elliott DA, et al. Safety and efficacy of accelerated hypofractionation and stereotactic body radiation therapy for hepatocellular carcinoma patients with varying degrees of hepatic impairment. Int J Radiat Oncol Biol Phys. 2018;100(3):577–85.

    Article  PubMed  Google Scholar 

  43. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31(4):864–71.

    Article  CAS  PubMed  Google Scholar 

  44. Martin AP, Bartels M, Hauss J, Fangmann J. Overview of the MELD score and the UNOS adult liver allocation system. Transplant Proc. 2007;39(10):3169–74.

    Article  CAS  PubMed  Google Scholar 

  45. Trey C, Burns DG, Saunders SJ. Treatment of hepatic coma by exchange blood transfusion. N Engl J Med. 1966;274(9):473–81.

    Article  CAS  PubMed  Google Scholar 

  46. Bruix J, Castells A, Bosch J, Feu F, Fuster J, Garcia-Pagan JC, et al. Surgical resection of hepatocellular carcinoma in cirrhotic patients: prognostic value of preoperative portal pressure. Gastroenterology. 1996;111(4):1018–22.

    Article  CAS  PubMed  Google Scholar 

  47. Groszmann RJ, Wongcharatrawee S. The hepatic venous pressure gradient: anything worth doing should be done right. Hepatology. 2004;39(2):280–2.

    Article  PubMed  Google Scholar 

  48. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550–8.

    Article  PubMed  Google Scholar 

  49. Liu PH, Hsu CY, Hsia CY, Lee YH, Chiou YY, Huang YH, et al. ALBI and PALBI grade predict survival for HCC across treatment modalities and BCLC stages in the MELD era. J Gastroenterol Hepatol. 2017;32(4):879–86.

    Article  PubMed  Google Scholar 

  50. Lee SK, Song MJ, Kim SH, Park M. Comparing various scoring system for predicting overall survival according to treatment modalities in hepatocellular carcinoma focused on platelet-albumin-bilirubin (PALBI) and albumin-bilirubin (ALBI) grade: a nationwide cohort study. PLoS One. 2019;14(5):e0216173.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mathew AS, Atenafu EG, Owen D, Maurino C, Brade A, Brierley J, et al. Long term outcomes of stereotactic body radiation therapy for hepatocellular carcinoma without macrovascular invasion. Eur J Cancer. 2020;134:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feng M, Suresh K, Schipper MJ, Bazzi L, Ben-Josef E, Matuszak MM, et al. Individualized adaptive stereotactic body radiotherapy for liver tumors in patients at high risk for liver damage: a phase 2 clinical trial. JAMA Oncol. 2018;4(1):40–7.

    Article  PubMed  Google Scholar 

  53. Everson GT, Shiffman ML, Hoefs JC, Morgan TR, Sterling RK, Wagner DA, et al. Quantitative liver function tests improve the prediction of clinical outcomes in chronic hepatitis C: results from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology. 2012;55(4):1019–29.

    Article  PubMed  Google Scholar 

  54. Burton JR, Helmke S, Lauriski S, Kittelson J, Everson GT. The within-individual reproducibility of the disease severity index from the HepQuant SHUNT test of liver function and physiology. Transl Res. 2021; https://doi.org/10.1016/j.trsl.2020.12.010.

  55. Kurland IJ, Broin P, Golden A, Su G, Meng F, Liu L, et al. Integrative metabolic signatures for hepatic radiation injury. PLoS One. 2015;10(6):e0124795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ng SSW, Jang GH, Kurland IJ, Qiu Y, Guha C, Dawson LA. Plasma metabolomic profiles in liver cancer patients following stereotactic body radiotherapy. EBioMedicine. 2020;59:102973.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cutler C, Kim HT, Ayanian S, Bradwin G, Revta C, Aldridge J, et al. Prediction of veno-occlusive disease using biomarkers of endothelial injury. Biol Blood Marrow Transplant. 2010;16(8):1180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee JH, Lee KH, Kim S, Seol M, Park CJ, Chi HS, et al. Plasminogen activator inhibitor-1 is an independent diagnostic marker as well as severity predictor of hepatic veno-occlusive disease after allogeneic bone marrow transplantation in adults conditioned with busulphan and cyclophosphamide. Br J Haematol. 2002;118(4):1087–94.

    Article  CAS  PubMed  Google Scholar 

  59. Salat C, Holler E, Kolb HJ, Reinhardt B, Pihusch R, Wilmanns W, et al. Plasminogen activator inhibitor-1 confirms the diagnosis of hepatic veno-occlusive disease in patients with hyperbilirubinemia after bone marrow transplantation. Blood. 1997;89(6):2184–8.

    Article  CAS  PubMed  Google Scholar 

  60. Yamanouchi K, Zhou H, Roy-Chowdhury N, Macaluso F, Liu L, Yamamoto T, et al. Hepatic irradiation augments engraftment of donor cells following hepatocyte transplantation. Hepatology. 2009;49(1):258–67.

    Article  PubMed  Google Scholar 

  61. Fried MW, Duncan A, Soroka S, Connaghan DG, Farrand A, Peter J, et al. Serum hyaluronic acid in patients with veno-occlusive disease following bone marrow transplantation. Bone Marrow Transplant. 2001;27(6):635–9.

    Article  CAS  PubMed  Google Scholar 

  62. Tabbara IA, Ghazal CD, Ghazal HH. Early drop in protein C and antithrombin III is a predictor for the development of venoocclusive disease in patients undergoing hematopoietic stem cell transplantation. J Hematother. 1996;5(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  63. Roeker LE, Kim HT, Glotzbecker B, Nageshwar P, Nikiforow S, Koreth J, et al. Early clinical predictors of hepatic veno-occlusive disease/sinusoidal obstruction syndrome after myeloablative stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(1):137–44.

    Article  PubMed  Google Scholar 

  64. Eltumi M, Trivedi P, Hobbs JR, Portmann B, Cheeseman P, Downie C, et al. Monitoring of veno-occlusive disease after bone marrow transplantation by serum aminopropeptide of type III procollagen. Lancet. 1993;342(8870):518–21.

    Article  CAS  PubMed  Google Scholar 

  65. Rio B, Bauduer F, Arrago JP, Zittoun R. N-terminal peptide of type III procollagen: a marker for the development of hepatic veno-occlusive disease after BMT and a basis for determining the timing of prophylactic heparin. Bone Marrow Transplant. 1993;11(6):471–2.

    CAS  PubMed  Google Scholar 

  66. Cao Y, Pan C, Balter JM, Platt JF, Francis IR, Knol JA, et al. Liver function after irradiation based on computed tomographic portal vein perfusion imaging. Int J Radiat Oncol Biol Phys. 2008;70(1):154–60.

    Article  PubMed  Google Scholar 

  67. Cao Y, Wang H, Johnson TD, Pan C, Hussain H, Balter JM, et al. Prediction of liver function by using magnetic resonance-based portal venous perfusion imaging. Int J Radiat Oncol Biol Phys. 2013;85(1):258–63.

    Article  PubMed  Google Scholar 

  68. Yannam GR, Han B, Setoyama K, Yamamoto T, Ito R, Brooks JM, et al. A nonhuman primate model of human radiation-induced venocclusive liver disease and hepatocyte injury. Int J Radiat Oncol Biol Phys. 2014;88(2):404–11.

    Article  PubMed  Google Scholar 

  69. Kabarriti R, Brodin NP, Yaffe H, Barahman M, Koba WR, Liu L, et al. Non-invasive targeted hepatic irradiation and SPECT/CT functional imaging to study radiation-induced liver damage in small animal models. Cancers (Basel). 2019;11(11):1796.

    Article  CAS  Google Scholar 

  70. Ward J, Guthrie JA, Sheridan MB, Boyes S, Smith JT, Wilson D, et al. Sinusoidal obstructive syndrome diagnosed with superparamagnetic iron oxide-enhanced magnetic resonance imaging in patients with chemotherapy-treated colorectal liver metastases. J Clin Oncol. 2008;26(26):4304–10.

    Article  PubMed  Google Scholar 

  71. Kwon AH, Ha-Kawa SK, Uetsuji S, Inoue T, Matsui Y, Kamiyama Y. Preoperative determination of the surgical procedure for hepatectomy using technetium-99m-galactosyl human serum albumin (99mTc-GSA) liver scintigraphy. Hepatology. 1997;25(2):426–9.

    Article  CAS  PubMed  Google Scholar 

  72. de Graaf W, van Lienden KP, van Gulik TM, Bennink RJ. (99m)Tc-mebrofenin hepatobiliary scintigraphy with SPECT for the assessment of hepatic function and liver functional volume before partial hepatectomy. J Nucl Med. 2010;51(2):229–36.

    Article  PubMed  Google Scholar 

  73. Tsegmed U, Kimura T, Nakashima T, Nakamura Y, Higaki T, Imano N, et al. Functional image-guided stereotactic body radiation therapy planning for patients with hepatocellular carcinoma. Med Dosim. 2017;42(2):97–103.

    Article  PubMed  Google Scholar 

  74. Chan SS, Colecchia A, Duarte RF, Bonifazi F, Ravaioli F, Bourhis JH. Imaging in hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Biol Blood Marrow Transplant. 2020;26(10):1770–9.

    Article  PubMed  Google Scholar 

  75. Reddivalla N, Robinson AL, Reid KJ, Radhi MA, Dalal J, Opfer EK, et al. Using liver elastography to diagnose sinusoidal obstruction syndrome in pediatric patients undergoing hematopoetic stem cell transplant. Bone Marrow Transplant. 2020;55(3):523–30.

    Article  CAS  PubMed  Google Scholar 

  76. Trenker C, Sohlbach K, Dietrich CF, Görg C. Clinical diagnosis of veno-occlusive disease using contrast enhanced ultrasound. Bone Marrow Transplant. 2018;53(10):1369–71.

    Article  CAS  PubMed  Google Scholar 

  77. Berzigotti A. Non-invasive evaluation of portal hypertension using ultrasound elastography. J Hepatol. 2017;67(2):399–411.

    Article  PubMed  Google Scholar 

  78. Bearman SI, Lee JL, Baron AE, McDonald GB. Treatment of hepatic venocclusive disease with recombinant human tissue plasminogen activator and heparin in 42 marrow transplant patients. Blood. 1997;89(5):1501–6.

    Article  CAS  PubMed  Google Scholar 

  79. Koay EJ, Owen D, Das P. Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol. 2018;28(4):321–31.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Feng M, Smith DE, Normolle DP, Knol JA, Pan CC, Ben-Josef E, et al. A phase I clinical and pharmacology study using amifostine as a radioprotector in dose-escalated whole liver radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83(5):1441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Seidensticker M, Seidensticker R, Damm R, Mohnike K, Pech M, Sangro B, et al. Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PLoS One. 2014;9(11):e112731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67(4):1560–99.

    Article  PubMed  Google Scholar 

  83. Zhou H, Dong X, Kabarriti R, Chen Y, Avsar Y, Wang X, et al. Single liver lobe repopulation with wildtype hepatocytes using regional hepatic irradiation cures jaundice in Gunn rats. PLoS One. 2012;7(10):e46775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kabarriti RZH, Vainshtein JV, Saha S, Hannan R, Thawani N, Alfieri A, Kalnicki S, Guha C. Transplantation of liver sinusoidal endothelial cells repairs HIR induced hepatic endothelial cell damage. Int J Radiat Oncol Biol Phys. 2010;78(3):S41.

    Article  Google Scholar 

  85. Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, et al. Hepatocyte transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys. 2019;103(4):922–34.

    Article  PubMed  Google Scholar 

  86. McGee HM, Daly ME, Azghadi S, Stewart SL, Oesterich L, Schlom J, et al. Stereotactic ablative radiation therapy induces systemic differences in peripheral blood immunophenotype dependent on irradiated site. Int J Radiat Oncol Biol Phys. 2018;101(5):1259–70.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017;8(1):1751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. MacLennan I, Kay H. Analysis of treatment in childhood leukemia. IV. The critical association between dose fractionation and immunosuppression induced by cranial irradiation. Cancer. 1978;41(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  90. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 2010;120(3):694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown JM. Vasculogenesis: a crucial player in the resistance of solid tumours to radiotherapy. Br J Radiol. 2014;87(1035):20130686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010;70(14):5679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  94. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167(6):1540–54. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Minn AJ, Wherry EJ. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell. 2016;165(2):272–5.

    Article  CAS  PubMed  Google Scholar 

  96. Ministro A, de Oliveira P, Nunes RJ, dos Santos RA, Correia A, Carvalho T, et al. Low-dose ionizing radiation induces therapeutic neovascularization in a pre-clinical model of hindlimb ischemia. Cardiovasc Res. 2017;113(7):783–94.

    Article  CAS  PubMed  Google Scholar 

  97. Potiron VA, Abderrahmani R, Clément-Colmou K, Marionneau-Lambot S, Oullier T, Paris F, et al. Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer. PLoS One. 2013;8(12):e84076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabarriti, R., Guha, C. (2021). Radiobiology of the Liver. In: Seong, J. (eds) Radiotherapy of Liver Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-16-1815-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1815-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1814-7

  • Online ISBN: 978-981-16-1815-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics