Skip to main content

Combustion Synthesis: A Versatile Method for Functional Materials

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Among several synthesis methods, combustion technique is an efficient method capable of producing material in shorter duration of time at lower temperature. Combustion method of synthesis has now been considered as an advanced synthesis protocol that can be used for synthesis of many pure and doped functional materials. This method has made an impact in the field of material science as it can be used for development of many stable and metastable materials like metals, alloys, ceramic, etc. This chapter discusses the basic of this synthesis technique to the recent advanced development in this field. Synthesis of materials by combustion will be elaborated followed by applications of few functional materials (catalytic, electrical, magnetic, and optical properties).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma R, Prajapati PK (2016) Nanotechnology in medicine: leads from ayurveda. J Pharm Bioallied Sci 8:80–81

    Article  CAS  Google Scholar 

  2. Freestone I, Meeks N, Sax M, Higgitt C (2007) The lycurgus cup—a roman nanotechnology. Gold Bull 40:270–277

    Article  CAS  Google Scholar 

  3. Srinivasan C (2007) Do Damascus swords reveal India’s mastery of nanotechnology? Cur Sci 92:279–280

    Google Scholar 

  4. Munir ZA, (1998) Field-effects in self-propagating solid-state reactions. Z. Physik Chemie 207:39–57  

    CAS  Google Scholar 

  5. Martirosyan KS, Luss D (2006) Combustion synthesis of ceramic composites from lunar soil simulant. Lunar and planetary science XXXVII

    Google Scholar 

  6. Li Z, Zhou W, Su X, Luo F, Zhu D, Liu P (2008) Preparation and characterization of aluminum‐doped silicon carbide by combustion synthesis. J Am Ceram Soc 91:2607–2610

    Google Scholar 

  7. Yeh CL, Chuang HC (2004) Combustion characteristics of SHS process of titanium nitride with TiN dilution. Ceram Int 30:705–714

    Article  CAS  Google Scholar 

  8. Yeh CL, Chen WH (2006) Preparation of niobium borides NbB and NbB2 by self-propagating combustion synthesis. J Alloys Comp 420:111–116

    Article  CAS  Google Scholar 

  9. (a) Tyagi AK, Purohit RD, Chavan SV, Bedekar V (2011) Nanocrystalline oxide ceramics through solution combustion. Encycl Nanosci Nanotechnol 17:89–117; (b) Deganello F (2017) Nanomaterials for environmental and energy applications prepared by solution combustion based-methodologies: role of the fuel. Mater Tod: Proc 4:5507–5516

    Google Scholar 

  10. Lackner M (2010) Combustion synthesis: novel routes to novel materials. Bentham Science Publishers

    Google Scholar 

  11. Wang LL, Munir ZA, Maximov YM (1993) Thermite reactions: their utilization in the synthesis and processing of materials. J Mater Sc 28:3693–3708

    Article  CAS  Google Scholar 

  12. Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opin Solid State Mater Sci 2:158–165

    Article  CAS  Google Scholar 

  13. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50

    Article  CAS  Google Scholar 

  14. Jain SR, Adiga KC, Verneker VRP (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40:71–79

    Article  CAS  Google Scholar 

  15. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10:6–12

    Article  CAS  Google Scholar 

  16. Purohit RD, Tyagi AK (2002) Auto-ignition synthesis of nanocrystalline BaTi4O9 powder. J Mater Chem 2:312–316

    Article  Google Scholar 

  17. Tsay J, Fang T (1999) Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal‐decomposition behavior of barium titanium citrate. J Amer Ceram Soc 82:1409–1415

    Article  CAS  Google Scholar 

  18. Kareiva A, Karppinen M, Niinisto L (1994) Sol–gel synthesis of superconducting YBa2Cu4O8 using acetate and tartrate precursors. J Mater Chem 4:1267–1270

    Article  CAS  Google Scholar 

  19. Yu X, An X (2009) Enhanced magnetic and optical properties of pure and (Mn, Sr) doped BiFeO3 nanocrystals. Solid Stat Comm 149:711–714

    Article  CAS  Google Scholar 

  20. Garcia R, Hirata GA, McKittrick J (2001) New combustion synthesis technique for the production of (InxGa1−x)2O3 powders: hydrazine/metal nitrate method. Mater Res 16:1059–1065

    Article  CAS  Google Scholar 

  21. Prabhu YT, Rao KV, Sai Kumar VS, Siva Kumari B (2013) Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method. Adv Nanopart 2:45–50

    Google Scholar 

  22. Merino MCG, Lascalea GE, Sánchez LM, Vázquez PG, Cabanillas ED, Lamas DG (2010) Nanostructured aluminium oxide powders obtained by aspartic acid–nitrate gel-combustion routes. J Alloys Comp 495:578–582

    Article  CAS  Google Scholar 

  23. Krishnamurthy N, Gupta CK (2015) Extractive metallurgy of rare earths, 2nd edn. CRC Press, pp 615–616

    Google Scholar 

  24. Muresan L, Cadis A, Perhaita I, Ponta O, Silipas D (2015) Thermal behavior of precursors for synthesis of Y2Si2O5:Ce phosphor via gel combustion. J Therm Anal Calor 119:1565–1576

    Article  CAS  Google Scholar 

  25. Mukherjee ST, Bedekar V, Patra A, Sastry PU, Tyagi AK (2008) Study of agglomeration behavior of combustion-synthesized nano-crystalline ceria using new fuels. J Alloys Comp 466:493–497

    Article  CAS  Google Scholar 

  26. Du X, Du HL, Shi X, Wang J, He JJ (2015) Photocatalytic activity of solar-light-active N-doped TiO2 by sol-gel combustion method. Mater Sci Forum 809–810:800–806

    Google Scholar 

  27. Merino MCG, Nasisi LDT, Montoya WM, Aguilera JNU, Emilia Fernandez de Rapp M, Lascalea GE, Vázquez PG (2015) Combustion syntheses of Co3O4 powders using different fuels. Proc Mater Sci 8:526–534

    Google Scholar 

  28. Patra H, Rout SK, Pratihar SK, Bhattacharya S (2011) Effect of process parameters on combined EDTA–citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ perovskite. Powd Technol 209:98–104

    Article  CAS  Google Scholar 

  29. Deganello F, Liotta LF, Marcı G, Fabbri E, Traversa E (2013) Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater Renew Sustain Energy 2:8, 14 pp

    Google Scholar 

  30. Subramania A, Angayarkanni N, Vasudevan T (2007) ffect of PVA with various combustion fuels in sol–gel thermolysis process for the synthesis of LiMn2O4 nanoparticles for Li-ion batteries Mater Chem Phys 102:19–23

    Article  CAS  Google Scholar 

  31. Lertpanyapornchai B, Yokoi T, Ngamcharussrivichai C (2016) Citric acid as complexing agent in synthesis of mesoporous strontium titanate via neutral-templated self-assembly sol-gel combustion method. Micropor Mesopor Mater 226:505–509

    Article  CAS  Google Scholar 

  32. Deganello F, Tyagi AK (2018) Solution combustion synthesis, energy and environment: best parameters for better materials. Prog Cryst Growth Character Mater 64:23–61

    Article  CAS  Google Scholar 

  33. Cruz D, Bulbulian S (2005) Synthesis of Li4SiO4 by a modified combustion method. J Am Ceram Soc 88:1720–1724

    Article  CAS  Google Scholar 

  34. Takatori K, Tani T, Watanabe N, Kamiya N (1999) Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method. J Nanoparticle Res 1:197–204

    Article  CAS  Google Scholar 

  35. Azizi S, Mohamad R, Mahdavi Shahri M (2017) Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with citrullus colocynthis (L.) schrad: characterization and biomedical applications. Molecules 22:301

    Google Scholar 

  36. Shukla R, Arya A, Tyagi AK (2010) Interconversion of perovskite and fluorite structures in Ce−Sc−O system. Inorg Chem 49:1152–1157

    Article  CAS  Google Scholar 

  37. Manukyan KV, Cross A, Roslyakov S, Rouvimov S, Rogachev AS, Wolf EE, Mukasyan AS (2013) Solution combustion synthesis of nano-crystalline metallic materials: mechanistic studies. J Phys Chem C 117:24417–24427

    Article  CAS  Google Scholar 

  38. Niu B, Zhang F, Ping H, Li N, Zhou J, Lei L, Xie J, Zhang J, Wang W, Fu Z (2017) Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sc Reports 7:3421

    Google Scholar 

  39. Hwang CC, Huang TH, Tsai JS, Lin CS, Peng CH (2006) Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route. Mater Sc Eng: B 132:229–238

    Article  CAS  Google Scholar 

  40. Purohit RD, Saha S, Tyagi AK (2006) Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies. Mater Sci Eng B 130:57–60

    Article  CAS  Google Scholar 

  41. Ningthoujam RS, Shukla R, Vatsa RK, Duppel V, Kienle L, Tyagi AK (2009) Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: phase, concentration, annealing, and luminescence studies. J Appl Phys 105:084304

    Article  Google Scholar 

  42. Singh SK, Kumar K, Rai SB (2009) Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystallinephosphor synthesized through optimized combustion route. App Phys B: Lasers Optics 94:165–173

    Article  CAS  Google Scholar 

  43. Pradhan GK, Martha S, Parida KM, (2012) Synthesis of multifunctional nanostructured zinc–iron mixed oxide photocatalyst by a simple solution-combustion technique. Appl ACS  Mater Interfaces 4:707–713

    Article  CAS  Google Scholar 

  44. Singh KA, Pathak LC, Roy SK (2007) Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate-citrate process. Ceram Int 33:1463–1468

    Article  CAS  Google Scholar 

  45. Marinsek M, Zupan K, Maèek J (2002) Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J Power Sources 106:178–188

    Article  CAS  Google Scholar 

  46. Biswas M, Ojha PK, Durga Prasad C, Gokhale NM, Sharma SC (2012) Synthesis of fluorite-type nanopowders by citrate-nitrate auto-combustion process: a systematic approach. Mater Sci App 3:110–115

    Google Scholar 

  47. Deorsola FA, Vallauri D (2008) Synthesis of TiO2 nanoparticles through the Gel Combustion process. J Mater Sci 43:3274–3278

    Article  CAS  Google Scholar 

  48. Chakroborty A, Das Sharma A, Maiti B, Maiti HS (2002) Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique. Mater Lett 57:862–867

    Google Scholar 

  49. Hwang BJ, Santhanam R, Liu DG (2001) Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol–gel method at low temperature. J Power Sources 101:86–89

    Article  CAS  Google Scholar 

  50. Costa AL, Esposito L, Medri V, Bellosi A (2007) Synthesis of Nd-YAG material by citrate–nitrate sol–gel combustion route.  Adv Eng Mater 9:307–312

    Article  CAS  Google Scholar 

  51. Mandal BP, Shukla R, Achary SN, Tyagi AK (2010) Crucial role of the reaction conditions in isolating several metastable phases in a Gd−Ce−Zr−O system. Inorg Chem 49:10415–10421

    Article  CAS  Google Scholar 

  52. Shukla R, Sayed FN, Grover V, Deshpande SK, Guleria A, Tyagi AK (2014) Quest for lead free relaxors in YIn1–xFexO3 (0.0 ≤ x ≤ 1.0) system: role of synthesis and structure. Inorg Chem 53:10101–10111

    Article  CAS  Google Scholar 

  53. Peng T, Liu X, Dai K, Xiao J, Song H (2006) Effect of acidity on the glycine–nitrate combustion synthesis of nano crystalline alumina powder. Mater Res Bull 41:1638–1645

    Article  CAS  Google Scholar 

  54. Zhuravlev VD, Bamburov VG, Beketov AR, Perelyaeva LA, Baklanova, Sivtsova OV, Vasil’ev VG, Vladimirova EV, Shevchenko VG, Grigorov IG (2013) Solution combustion synthesis of α-Al2O3 using urea. Ceramics Int 39:1379–1384

    Google Scholar 

  55. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586

    Article  CAS  Google Scholar 

  56. Manicone PF, Iommetti PR, Raffaelli L (2007) An overview of zirconia ceramics: Basic properties and clinical applications. J Dent 35:819–826

    Article  CAS  Google Scholar 

  57. Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298

    Article  CAS  Google Scholar 

  58. Jiang J, Hu X, Shen W, Ni C, Hertz JL (2013) Improved ionic conductivity in strained yttria-stabilized zirconia thin films. Appl Phys Lett 102:143901

    Article  Google Scholar 

  59. Scherrer B, Schlupp MVF, Stender D, Martynczuk J, Grolig JG, Ma H, Kocher P, Lippert T, Prestat M, Gauckler LJ (2013) On proton conductivity in porous and dense yttria stabilized zirconia at low temperature. Adv Funct Mater 23:1957–1964

    Article  CAS  Google Scholar 

  60. Chao CC, Park JS, Tian X, Shim JH, Gur TM, Prinz FB (2013) Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia. ACS Nano 7:2186–2191

    Article  CAS  Google Scholar 

  61. Zhong Z, Gallagher P (1995) Combustion synthesis and characterization of BaTiO3. J Mater Res 10:945–952

    Article  CAS  Google Scholar 

  62. Klaytae T, Panthong P, Thountom S (2013) Preparation of nanocrystalline SrTiO3 powder by sol–gel combustion method. Ceram Int 39:S405–S408

    Article  CAS  Google Scholar 

  63. Krengvirat W, Sreekantan S, Mohd Noor AF, Chinwanitcharoen C, Muto H, Matsuda A (2012) Influences of pH on the structure, morphology and dielectric properties of bismuth titanate ceramics produced by a low-temperature self-combustion synthesis without an additional fuel agent. Ceram Int 38:3001–3009

    Google Scholar 

  64. Liu B, Zhang Y, Zhang L (2008) Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ–La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathode for solid oxide fuel cell. J Pow Sourc 175:189–195

    Article  CAS  Google Scholar 

  65. Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT, Sattler C, Stobbe P, Steele AM (2005) Solar water splitting for hydrogen production with monolithic reactors. Solar Energy 75 409–421

    Google Scholar 

  66. Jayalakshmi M, Palaniappan M, Balasubramanian K (2008) Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int J Electrochem Sci 3:96–103

    CAS  Google Scholar 

  67. Kam KC, Mehta A, Heron JT, Doeff MM (2012) Electrochemical and physical properties of Ti-substituted layered nickel manganese cobalt oxide (NMC) cathode materials.  J Electrochem Soc 159:A1383–A1392

    Article  CAS  Google Scholar 

  68. Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5:874–901

    Article  CAS  Google Scholar 

  69. Ramasami AK, Reddy MV, Nithyadharseni P, Chowdari BVR, Balakrishna GR (2017) Gel-combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries.  J Alloys Comp 695:850–858

    Article  CAS  Google Scholar 

  70. Bhatkar VB, Bhatkar NV (2011) Combustion synthesis and photoluminescence study of silicate biomaterials. Bull Mater Sci 34:1281–1284

    Article  CAS  Google Scholar 

  71. Srinivas M, Buvaneswari G (2006) A study of in vitro drug release from zirconia ceramics. Trends Biomater Artif Organs 20:24–30

    Google Scholar 

  72. Pilathadka S, Vahalová D, Vosáhlo T (2007) The Zirconia: a new dental ceramic material. An overview. Prague Med Rep 108:5–12

    CAS  Google Scholar 

  73. Pullar RC (2012) Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334

    Article  CAS  Google Scholar 

  74. Shukla R, Ningthoujam RS, Umare SS, Sharma SJ, Kurian S, Vatsa RK, Tyagi AK, Gajbhiye NS (2008) Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. Hyperfine Interac 184:217–225

    Article  CAS  Google Scholar 

  75. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, London

    Google Scholar 

  76. Deshpande K, Mukasyan A, Varma A (2004) Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem Mater 16:4896–4904

    Article  CAS  Google Scholar 

  77. Li S (2019) Combustion synthesis of porous MgO and its adsorption properties. Int J Ind Chem 10:89–96

    Article  CAS  Google Scholar 

  78. Venkatesham V, Madhu GM, Satyanarayana SV, Preetham HS (2013) Adsorption of lead on gel combustion derived nano ZnO. Procedia Eng 51:308–313

    Article  CAS  Google Scholar 

  79. Luu TH, Nguyen XD, Huyen Phan TM, Schulze S, Hietschold M (2015) Synthesis and microstructure of La1−xCaxCoO3 nanoparticles and their catalytic activity for CO oxidation. Adv Nat Sci Nanosci Nanotechnol 6:025016

    Google Scholar 

  80. Burange AS, Reddy KP, Gopinath CS, Shukla R, Tyagi AK (2018) Role of palladium crystallite size on CO oxidation over CeZrO4-δ supported Pd catalysts. Molecul Catal 455:1–5

    Article  CAS  Google Scholar 

  81. Pawar RY, Pardeshi SK (2018) Selective oxidation of styrene to benzaldehyde using soft BaFe2O4 synthesized by citrate gel combustion method. Arab J Chem 11:282–290

    Article  CAS  Google Scholar 

  82. Burange AS, Shukla R, Tyagi AK, Gopinath CS (2016) Palladium supported on fluorite structured redox CeZrO4‐δ for heterogeneous suzuki coupling in water: a green Ppotocol. Chem Select 1:2673–2681

    CAS  Google Scholar 

  83. Singh V, Chakradhar RPS, Rao JL, Kim DK (2009) Combustion synthesized MgAl2O4:Cr phosphors-An EPR and optical study.  J Lumin 129:130–134

    Google Scholar 

  84. Othmer K (1993) Encyclopedia of chemical technology, vol 5. John Wiley, New York

    Google Scholar 

  85. Accardo G, Frattini D, Ham HC, Han JH, Yoon SP (2018) Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceram Int 44:3800–3809

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, R., Tyagi, A.K. (2021). Combustion Synthesis: A Versatile Method for Functional Materials. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1807-9_2

Download citation

Publish with us

Policies and ethics