Skip to main content

Synthesis of Materials by Ion Exchange Process: A Mild Yet Very Versatile Tool

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

The technological advances of the society have been intricately related to development of novel and improvised materials and methodologies. Conventional synthesis routes involving higher temperatures and longer reaction duration tend to yield the thermodynamically stable products that have the limitation on introducing newer functionalities. The synthesis of the materials with desired properties requires novel routes that can take place at milder conditions. Synthesis by ion-exchange is one such low temperature preparative route that can be utilised to design rational synthesis to obtain materials with desired structures and morphologies. It has become a technique of choice to synthesize novel three dimensional layered structures that possess exchangeable cations. It has been used to synthesize nano-materials, not just de novo, but also as a post-synthetic procedure to obtain hitherto inaccessible phases and complex hetero-structures. These have various applications as next generation catalysts, electrical, optical, opto-electronic and magnetic materials. Understanding of mechanism of ion exchange synthesis process would also aid in better fundamental understanding and would ultimately help in planning, control and execution of the synthesis processes in systematic and a logical manner. The chapter discusses the history, fundamentals and applications of “preparation of materials by ion exchange synthesis” with relevant examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucy CA (2003) Evolution of ion-exchange: from Moses to the Manhattan Project to modern times. J Chromatogr A 1000:711

    Google Scholar 

  2. Thompson HS (1850) On the absorbent power of soils. J R Agric Soc Engl 11:68

    Google Scholar 

  3. Way JT (1850) On the power of soils to absorb manure. J R Agric Soc Engl 11:313

    Google Scholar 

  4. Way JT (1852) On the power of soils to absorb manure. J R Agric Soc Engl 13:123

    Google Scholar 

  5. Kunin R (1958) Ion exchange resins. John Wiley and Sons, New York

    Google Scholar 

  6. Folin O, Bell R (1917) Applications of a new reagent for the separation of ammonia: I. The colorimetric determination of ammonia in urine. J Biol Chem 29:329

    Google Scholar 

  7. Adams BA, Holmes EL (1935) Adsorptive properties of synthetic resins. J Soc Chem Ind (London) 54:1–6T

    Google Scholar 

  8. Settle FA (2002) Peer Reviewed: analytical chemistry and the manhattan project. Anal Chem 74:36A

    Google Scholar 

  9. Marinsky JA, Glendenin LE, Coryell CD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781

    Google Scholar 

  10. Kumar S, Jain S (2013) History, introduction, and kinetics of ion exchange materials. J Chem 957647

    Google Scholar 

  11. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689

    Google Scholar 

  12. Schmalzried H (1981) Solid state reactions. Verlag Chemie, Weinheim, Germany

    Google Scholar 

  13. Fedorov VA, Ganshin VA, Korkishko YN (1993) Ion exchange in II–VI crystals: Thermodynamics, kinetics, and technology. Phys Status Solidi A 139:65

    Google Scholar 

  14. Dloczik L, Engelhardt R, Ernst K, Fiechter S, Sieber I, Konenkamp R (2001) Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Appl Phys Lett 78:3687

    Google Scholar 

  15. Dloczik L, Konenkamp R (2003) Nanostructure transfer in semiconductors by ion exchange. Nano Lett 3:651

    Google Scholar 

  16. Park J, Zheng H, Jun Y-W, Alivisatos AP (2009) Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J Am Chem Soc 131:13943

    Google Scholar 

  17. Beberwyck BJ, Surendranath Y, Alivisatos AP (2013) Cation exchange: a versatile tool for nanomaterials synthesis. J Phys Chem C 117(39):19759

    Google Scholar 

  18. Rivest JB, Jain PK (2013) Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 42:89

    Google Scholar 

  19. Gopalakrishnan J  (1995) Chimie douce approaches to the synthesis of metastable oxide materials. Chem Mater 7:1265

    Google Scholar 

  20. Uppuluri R, Sen Gupta A, Ross AS, Mallouk TE (2018) Soft chemistry of ion-exchangeable layered metal oxides. Chem Soc Rev 47:2401

    Google Scholar 

  21. Krebs B (1970) The crystal structure of MoO3,2H2O: a metal aquoxide with both co-ordinated and hydrate water. J Chem Soc D 50:51

    Google Scholar 

  22. Bachmann HG, Ahmed FR, Barnes WH, Kristallogr Z (1961) The crystal structure of vanadium pentoxide. Cryst Mater 115:110

    Google Scholar 

  23. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Phys B + C 99:81

    Google Scholar 

  24. Gasperin M (1982) Structure du triniobate(V) de potassium KNb3O8, un niobate lamellaire. Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 38:2024

    Google Scholar 

  25. Gasperin M, LeBihan MT (1982) Mecanisme d'hydratation des niobates alcalins lamellaires de formule A4Nb4O17 (A = K, Rb, Cs). J Solid State Chem 43:346

    Google Scholar 

  26. Andersson S, Wadsley AD (1961) The crystal structure of Na2Ti3O7, Acta Crystallogr 14:1245

    Google Scholar 

  27. Dion M, Piffard Y, Tournoux M (1978) The tetratitanates M2Ti4O9 (M = Li, Na, K, Rb, Cs, Tl, Ag). J Inorg Nucl Chem 40:917

    Google Scholar 

  28. Wadsley AD, Mumme WG (1968) The crystal structure of Na2Ti7O15, and an ordered intergrowth of Na2Ti6O13 and `Na2Ti8O17', Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 24:392

    Google Scholar 

  29. Watanabe M, Bando Y, Tsutsumi M (1979) A new member of sodium titanates, Na2Ti9O19. J Solid State Chem 28:397

    Google Scholar 

  30. Marchand R, Brohan L, Tournoux M (1980) TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater Res Bull 15:1129

    Google Scholar 

  31. Olazcuaga R, Reau J-M, Devalette M, Le Flem G, Hagenmuller P (1975) Les phases Na4XO4 (X = Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) et K4XO4 (X = Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb). J Solid State Chem 13:275

    Google Scholar 

  32. Werthmann R, Hoppe R, Anorg Z (1984) Über Oxotitanate der Alkalimetalle. Zur Kenntnis von Na4Ti5O12. Allg Chem 519:117

    Google Scholar 

  33. Wadsley AD (1957) Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8. Acta Crystallogr 10:261

    Google Scholar 

  34. Okada K, Marumo F, Iwai S (1978) The crystal structure of Cs6W11O36 Acta Crystallogr, Sect B: Struct Crystallogr Cryst Chem 34:50

    Google Scholar 

  35. Delmas C, Fouassier C, Anorg Z (1976) Les Phases KxMnO2 (x ≤ 1). Allg Chem 420:184

    Google Scholar 

  36. Feitknecht W, Gerber M (1942) Zur Kenntnis der Doppelhydroxyde und basischen Doppelsalze II. Über Mischfällungen aus Calcium‐Aluminiumsalzlösungen, Helv Chim Acta 25:131

    Google Scholar 

  37. Lee JH, Young DY, Kim E, Ahn TK (2014) Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces. Dalton Trans 43:8543

    Google Scholar 

  38. Klevtsova RF, Klevtsov PV (1967) X-ray diffraction study of a new modification of yttrium hydroxychloride Y(OH)2Cl. J Struct Chem 7:524

    Google Scholar 

  39. Geng F, Matsushita Y, Ma R, Xin H, Tanaka M, Izumi F, Iyi N, Sasaki T (2008) General synthesis and structural evolution of a layered family of Ln8(OH)20Cl4.nH2O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). J Am Chem Soc 130:16344

    Google Scholar 

  40. Izawa H, Kikkawa S, Koizumi M (1982) Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9.  J Phys Chem 86:5023

    Google Scholar 

  41. Tournoux M, Marchand R, Brohan L (1986) Layered K2Ti4O9 and the open metastable TiO2(B) structure. Prog Solid State Chem 17:33

    Google Scholar 

  42. Hyeon K-A, Byeon S-H (1999) Synthesis and structure of new layered oxides, MIILa2Ti3O10 (M = Co, Cu, and Zn). Chem Mater 11:352

    Google Scholar 

  43. Kodenkandath TA, Lalena JN, Zhou WL, Carpenter EE, Sangregorio C, Falster AU, Simmons WB, O’Connor CJ, Wiley JB (1999) Assembly of Metal−Anion arrays within a perovskite host. Low-temperature synthesis of new layered copper−oxyhalides, (CuX)LaNb2O7, X = Cl, Br. J Am Chem Soc 121:10743

    Google Scholar 

  44. Gopalakrishnan J, Bhat V (1987) AILaNb2O7: A new series of layered perovskites exhibiting ion exchange and intercalation behaviour. Mat Res Bull 22:413

    Google Scholar 

  45. Bhat V, Gopalakrishnan J (1988) HNbWO6 and HTaWO6: Novel layered oxides related to the rutile structure. Synthesis and investigation of ion-exchange and intercalation behaviour. Solid State Ionics 26:25

    Google Scholar 

  46. Gopalakrishnan J (1986) Low-temperature synthesis of novel metal oxides by topochemical reactions. Proc Indian Natl Sci Acad A 52:48

    Google Scholar 

  47. Rebbah H, Desgardin G, Raveau B (1979) Les oxydes ATiMO5 : Echangeurs cationiques. Mater Res Bull 14:1125

    Google Scholar 

  48. Guertin SL, Josepha EA, Montasserasadi D, Wiley JB (2015) Thermal stability and high temperature polymorphism of topochemically-prepared Dion–Jacobson triple-layered perovskites. J Alloys Compd 647:370

    Google Scholar 

  49. Kobayashi Y, Tian M, Eguchi M, Mallouk TE (2009) Ion-Exchangeable, electronically conducting layered perovskite oxyfluorides. J Am Chem Soc 131:9849

    Google Scholar 

  50. Jacobson AJ, Johnson JW, Lewandowski JT (1987) Intercalation of the layered solid acid HCa2Nb3O10 by organic amines. Mater Res Bull 22:45

    Google Scholar 

  51. Treacy MMJ, Rice SB, Jacobson AJ, Lewandowski JT (1990) Electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan-3NbnO3n-1]: evidence for single-layer formation. Chem Mater 2:279

    Google Scholar 

  52. Hardin S, Hay D, Millikan M, Sanders JV, Turney JW (1991) A molecular composite between partially hydrolyzed aluminum cations and a layered calcium niobate perovskite. Chem Mater 3:977

    Google Scholar 

  53. Uma S, Raju AR, Gopalakrishnan J (1993) Bridging the Ruddlesden–Popper and the Dion–Jacobson series of layered perovskites: synthesis of layered oxides, A2–xLa2Ti3–xNbxO10(A = K, Rb), exhibiting ion exchange. J Mater Chem 3:709

    Google Scholar 

  54. Dion M, Ganne M, Tournoux M, Ravez J (1984) Structure cristalline de la pérovskite feuilletée ferroélastique CsCa2Nb3O10. Rev Chim Miner 21:92

    Google Scholar 

  55. Gopalakrishnan J, Uma S, Bhat V (1993) Synthesis of layeerd perovskite oxides, ACa2-xLaxNb3-xTixO10 (x: K,Rb,Cs) and characterisation of new solid acids, HCa2-xLaxNb3-xTixO10 (0≤x ≤ 2) exhibiting variable bronsted acidity.  Chem Mater 5:132

    Google Scholar 

  56. Choy JH, Kim JY, Kim SJ, Sohn JS, Han OH (2001) New Dion−Jacobson-Type Layered Perovskite Oxyfluorides, ASrNb2O6F (A = Li, Na, and Rb). Chem Mater 13:906

    Google Scholar 

  57. Blasse G, van del Heuvel GPM (1974) Vibrational spectra and structural considerations of compounds NaLnTiO4. J Solid State Chem 10:206  

    Google Scholar 

  58. Ollivier PJ, Mallouk TE (1998) A “Chimie Douce” Sythesis of Perovskite-Type SrTa2O6 and SrTa2-xNbxO6. Chem Mater 10:2585

    Google Scholar 

  59. Gondrand M, Joubert JC (1987) Nouveaux oxydes à structure en couches dérivant de celle de la pérovskite: le titanate double, Na2Gd2Ti3O10: cristallochimie et réactions d'échange. Rev Chim Miner 24:33

    Google Scholar 

  60. Gopalakrishnan J, Bhat V (1987) A2Ln2Ti3O10 (A = potassium or rubidium; Ln = lanthanum or rare earth): a new series of layered perovskites exhibiting ion exchange. Inorg Chem 26:4299

    Google Scholar 

  61. Takata T, Shinohara K, Tanaka A, Hara M, Kondo JN and Domen K (1997) A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. J Photochem Photobiol. A: Chemistry 106, 45-49

    Google Scholar 

  62. Mitsuyama T, Tsutsumi A, Sato S, Ikeue K, Machida M (2008) Relationship between interlayer hydration and photocatalytic water splitting of A′1−xNaxCa2Ta3O10·nH2O (A′=K and Li). J Solid State Chem 181:1419

    Google Scholar 

  63. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664

    Google Scholar 

  64. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630

    Google Scholar 

  65. Chan EM, Marcus MA, Fakra S, ElNaggar M, Mathies RA, Alivisatos AP (2007) Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. J Phys Chem A 111:12210

    Google Scholar 

  66. Son DH, Hughes SM, Yin Y, Alivisatos AP (2004) Cation exchange reactions in Ionic nanocrystals. Science 306:1009

    Google Scholar 

  67. Dloczik L, Koenenkamp R (2004) Nanostructured metal sulfide surfaces by ion exchange processes. J Solid State Electrochem 8:142

    Google Scholar 

  68. Mews A, Eychmuller A, Giersig M, Schooss D, Weller H (1994) Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J Phys Chem 98:934

    Google Scholar 

  69. Camargo PHC, Lee YH, Jeong U, Zou Z, Xia Y (2007) Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 23:2985

    Google Scholar 

  70. Murray C, Norris D, Bawendi M (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706

    Google Scholar 

  71. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59

    Google Scholar 

  72. Sadtler B, Demchenko DO, Zheng H, Hughes SM, Merkle MG, Dahmen U, Wang L-W, Alivisatos AP (2009) Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J Am Chem Soc 131:5285

    Google Scholar 

  73. Luther JM, Zheng H, Sadtler B, Alivisatos AP (2009) Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J Am Chem Soc 131:16851

    Google Scholar 

  74. Miszta K, Dorfs D, Genovese A, Kim MR, Manna L (2011) Cation exchange reactions in colloidal branched nanocrystals. ACS Nano 5:7176

    Google Scholar 

  75. Wills AW, Kang MS, Wentz KM, Hayes SE, Sahu A, Gladfelter WL, Norris DJ (2012) Synthesis and characterization of Al- and In-doped CdSe nanocrystals. J Mater Chem 22:6335

    Google Scholar 

  76. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019

    Google Scholar 

  77. Kim S, Fisher B, Eisler H, Bawendi M (2003) Type-II Quantum Dots:  CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J Am Chem Soc 125:11466

    Google Scholar 

  78. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP (2007) Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett 7:2951

    Google Scholar 

  79. Sitt A, Della Sala F, Menagen G, Banin U (2009) Multiexciton engineering in seeded core/shell nanorods: Transfer from Type-I to Quasi-type-II Regimes. Nano Lett 9:3470

    Google Scholar 

  80. Pietryga JM, Werder DJ, Williams DJ, Casson JL, Schaller RD, Klimov VI, Hollingsworth JA  (2008) Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J Am Chem Soc 130:4879

    Google Scholar 

  81. Rivest JB, Swisher SL, Fong LK, Zheng H, Alivisatos AP (2011) Assembled Monolayer Nanorod Heterojunctions. ACS Nano 5(5):3811

    Google Scholar 

  82. Casavola M, van Huis MA, Bals S, Lambert K, Hens Z, Vanmaekelbergh D (2012) Anisotropic cation exchange in PbSe/CdSe Core/Shell nanocrystals of different geometry. Chem Mater 24:294

    Google Scholar 

  83. Li H, Zanella M, Genovese A, Povia M, Falqui A, Giannini C, Manna L (2011) Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Lett 11:4964

    Google Scholar 

  84. Dilena E, Dorfs D, George C, Miszta K, Povia M, Genovese A, Casu A, Prato M, Manna L (2012) Colloidal Cu2−x(SySe1−y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation. J Mater Chem 22:13023

    Google Scholar 

  85. Yan C, Xue D (2008) Formation of Nb2O5 nanotube arrays through phase transformation. Adv Mater 20:1055

    Google Scholar 

  86. Yan C, Nikolova L, Dadvand A, Harnagea C, Sarkissian A, Perepichka DF, Xue D, Rosei F (2010) Multiple NaNbO3/Nb2O5 heterostructure nanotubes: A new class of ferroelectric/semiconductor Nanomaterials. Adv Mater 22:1741

    Google Scholar 

  87. Cao H, Qian X, Wang C, Ma X, Yin J, Zhu Z (2005) High symmetric 18-Facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16024

    Google Scholar 

  88. Khanal A, Inoue Y, Yada M, Nakashima K (2007) Synthesis of silica hollow nanoparticles templated by polymeric micelle with core−shell−corona structure. J Am Chem Soc 129:1534

    Google Scholar 

  89. Lee J-H, Huh Y-M, Jun Y, Seo J, Jang J, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J  (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95

    Google Scholar 

  90. Wang B, Chen JS, Wu HB, Wang ZY, Lou XW (2011) Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc 133:17146

    Google Scholar 

  91. Prashant J, Lilac A, Shaul A, Alivisatos AP (2010)  Nanoheterostructure cation exchange: anionic framework conservation. J Am Chem Soc 132:9997

    Google Scholar 

  92. Yan C, Xue D (2006) Conversion of ZnO Nanorod Arrays into ZnO/ZnS Nanocable and ZnS Nanotube Arrays via an in Situ Chemistry Strategy. J Phys Chem B 110:25850

    Google Scholar 

  93. Yan C, Xue D, (2006) Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide. J Phys Chem B 110:11076

    Google Scholar 

  94. Liu J, Xue D (2008) Thermal oxidation strategy towards porous metal oxide hollow architectures. Adv Mater 20:2622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grover, V. (2021). Synthesis of Materials by Ion Exchange Process: A Mild Yet Very Versatile Tool. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1807-9_10

Download citation

Publish with us

Policies and ethics