Skip to main content

Implications of Synthesis Methodology on Physicochemical and Biological Properties of Hydroxyapatite

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Hydroxyapatite (HAp) is a well-known ceramic biomaterial, which has widely been used in various biomedical applications. It has garnered the attention of researchers mainly due to its chemical and mechanical similarities with the apatite phase present in the bones and teeth of humans. Owing to its biological similarity, HAp has excellent biocompatibility and can trigger both osteoconduction and osteoinduction activities. Therefore, HAp has been employed in a wide range of therapeutic applications ranging from simple dental fillings, bioactive coatings on implants to strategically designed drug delivery systems, and even for tissue engineering applications. Synthesis methodology plays an important role in determining the physicochemical properties of HAp, which in turn affects its mechanical and biological performance. The desired characteristics of HAp can be achieved by choosing an appropriate method of synthesis with optimized reaction conditions. This chapter, in depth, will discuss the various methods of synthesizing HAp, along with their advantages and disadvantages and implications on physicochemical characteristics and biological performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan H, Wilson RM, Elliott JC, Dowker SEP, Anderson P (2000) Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials 21:617–627. https://doi.org/10.1016/S0142-9612(99)00225-2

    Article  CAS  Google Scholar 

  2. Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 80(180):1055–1057. https://doi.org/10.1126/science.180.4090.1055

  3. Suetsugu Y, Tateishi T (2008) Implants and biomaterials (hydroxyapatite). Implants 10:1–10

    Google Scholar 

  4. Jindal AB (2017) The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 532:450–465. https://doi.org/10.1016/j.ijpharm.2017.09.028

    Article  CAS  Google Scholar 

  5. Saxena V, Shukla I, Pandey LM (2019) Hydroxyapatite: an inorganic ceramic for biomedical applications. In: Holban AM, Grumezescu AM (eds) Materials for biomedical engineering: Nanobiomaterials in tissue engineering, Chapter 8.  Elsevier Inc., pp 205–249 https://doi.org/10.1016/B978-0-12-816909-4.00008-7

  6. Khalid H, Chaudhry AA (2020) Basics of hydroxyapatite-structure, synthesis, properties, and clinical applications. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102834-6.00004-5

    Article  Google Scholar 

  7. Lu Y, Dong W, Ding J, Wang W, Wang A (2019) Hydroxyapatite nanomaterials: synthesis, properties, and functional applications. In: Wang A, Wang W (eds) Nanomaterials from clay minerals: A new approach to green functional materials micro and nano technologies, Chapter 10. Elsevier Inc., pp 485–536. https://doi.org/10.1016/b978-0-12-814533-3.00010-7

  8. Koonawoot R, Saelee C, Thiansem S, Punyanitya S (2012) Synthesis control and characterization of hydroxyapatite ceramic using a solid state reaction. In: 1st Mae Fah Luang University International Conference, pp 2–6

    Google Scholar 

  9. Rao RR, Roopa HN, Kannan TS (1997) Solid state synthesis and thermal stability of HAP and HAP—β-TCP composite ceramic powders. J Mater Sci Mater Med 8:511–518. https://doi.org/10.1023/A:1018586412270

    Article  CAS  Google Scholar 

  10. Pramanik S, Agarwal AK, Rai KN, Garg A (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int 33:419–426. https://doi.org/10.1016/j.ceramint.2005.10.025

    Article  CAS  Google Scholar 

  11. Ezerskyte-Miseviciene A, Kareiva A (2019) Everything old is new again: a reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. Mendeleev Commun 29:273–275. https://doi.org/10.1016/j.mencom.2019.05.010

    Article  CAS  Google Scholar 

  12. Guo X, Yan H, Zhao S, Li Z, Li Y, Liang X (2013) Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv Powder Technol 24:1034–1038. https://doi.org/10.1016/j.apt.2013.03.002

    Article  CAS  Google Scholar 

  13. Mochales C, Wilson RM, Dowker SEP, Ginebra MP (2011) Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: structural characterisation. J Alloys Compd 509:7389–7394. https://doi.org/10.1016/j.jallcom.2011.04.033

    Article  CAS  Google Scholar 

  14. Fathi MH, Zahrani EM (2008) Mechanochemical synthesis of fluoridated hydroxyapatite nanopowder. Int J Mod Phys B 22:3099–3106. https://doi.org/10.1142/S0217979208047961

    Article  CAS  Google Scholar 

  15. Boudeville P, Pauvert B, Ginebra MP, Fernandez E, Planell JA (2001) Dry mechanochemical synthesis of apatites and other calcium phosphates. Key Eng Mater 192–195:115–118. https://doi.org/10.4028/www.scientific.net/kem.192-195.115

  16. Silva CC, Graça MPF, Valente MA, Sombra ASB (2007) Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. J Mater Sci 42:3851–3855. https://doi.org/10.1007/s10853-006-0474-0

    Article  CAS  Google Scholar 

  17. Serraj S, Boudeville P, Pauvert B, Terol A (2001) Effect on composition of dry mechanical grinding of calcium phosphate mixtures. J Biomed Mater Res 55:566–575. https://doi.org/10.1002/1097-4636(20010615)55:4%3c566::AID-JBM1050%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  18. El Briak-BenAbdeslam H, Mochales C, Ginebra MP, Nurit J, Planell JA, Boudeville P (2003) Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: a kinetic study. J Biomed Mater Res Part A 67:927–937. https://doi.org/10.1002/jbm.a.10025

    Article  CAS  Google Scholar 

  19. Mochales C, El Briak-BenAbdeslam H, Ginebra MP, Terol A, Planell JA, Boudeville P (2004) Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Biomaterials 25:1151–1158. https://doi.org/10.1016/j.biomaterials.2003.08.002

    Article  CAS  Google Scholar 

  20. Fahami A, Ebrahimi-Kahrizsangi R, Nasiri-Tabrizi B (2011) Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci 13:135–141. https://doi.org/10.1016/j.solidstatesciences.2010.10.026

    Article  CAS  Google Scholar 

  21. Yeong B, Junmin X, Wang J (2001) Mechanochemical synthesis of hydroxyapatite from calcium oxide and brushite. J Am Ceram Soc 84:465–467. https://doi.org/10.1111/j.1151-2916.2001.tb00681.x

    Article  CAS  Google Scholar 

  22. Otsuka M, Matsuda Y, Hsu J, Fox JL, Higuchi WI (1994) Mechanochemical synthesis of bioactive material: effect of environmental conditions on the phase transformation of calcium phosphates during grinding. Biomed Mater Eng 4:357–362. https://doi.org/10.3233/BME-1994-4502

    Article  CAS  Google Scholar 

  23. Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P (2009) Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett 63:543–546. https://doi.org/10.1016/j.matlet.2008.11.030

    Article  CAS  Google Scholar 

  24. Honarmandi P, Honarmandi P, Shokuhfar A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R (2010) Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles. Adv Appl Ceram 109:117–122. https://doi.org/10.1179/174367509X12447975734230

    Article  CAS  Google Scholar 

  25. Mohd Pu’ad NAS, Abdul Haq RH, Mohd Noh H, Abdullah HZ, Idris MI, Lee TC (2020) Synthesis method of hydroxyapatite: a review. Mater Today Proc 29(1):233–239. https://doi.org/10.1016/j.matpr.2020.05.536

  26. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  Google Scholar 

  27. Szcześ A, Hołysz L, Chibowski E (2017) Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 249:321–330. https://doi.org/10.1016/j.cis.2017.04.007

    Article  CAS  Google Scholar 

  28. Santos MH, de Oliveira M, de Freitas Souza LP, Mansur HS, Vasconcelos WL (2004) Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Biomaterials Symposium - II SBPMAT, RIO DE JANEIRO - RJ 26-29 DE OUTUBRO/2003 Mat Res 7(4). https://doi.org/10.1590/s1516-14392004000400017

  29. Kothapalli C, Wei M, Vasiliev A, Shaw MT (2004) Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater 52:5655–5663. https://doi.org/10.1016/j.actamat.2004.08.027

    Article  CAS  Google Scholar 

  30. Gentile P, Wilcock CJ, Miller CA, Moorehead R, Hatton PV (2015) Process optimisation to control the physico-chemical characteristics of biomimetic nanoscale hydroxyapatites prepared using wet chemical precipitation. Materials (Basel) 8:2297–2310. https://doi.org/10.3390/ma8052297

    Article  CAS  Google Scholar 

  31. Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M (2007) Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloys Compd 430:330–333. https://doi.org/10.1016/j.jallcom.2006.05.018

    Article  CAS  Google Scholar 

  32. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC (2003) Some important factors in the wet precipitation process of hydroxyapatite. Mater Des 24:197–202. https://doi.org/10.1016/S0261-3069(03)00003-7

    Article  CAS  Google Scholar 

  33. Bouyer E, Gitzhofer F, Boulos MI (2000) Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med 11:523–531. https://doi.org/10.1023/A:1008918110156

    Article  CAS  Google Scholar 

  34. Pang YX, Bao X (2003) Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 23:1697–1704. https://doi.org/10.1016/S0955-2219(02)00413-2

    Article  CAS  Google Scholar 

  35. Han GS, Lee S, Kim DW, Kim DH, Noh JH, Park JH, Roy S, Ahn TK, Jung HS (2013) A simple method to control morphology of hydroxyapatite nano- and microcrystals by altering phase transition route. Cryst Growth Des 13:3414–3418. https://doi.org/10.1021/cg400308a

    Article  CAS  Google Scholar 

  36. Peng H, Wang J, Lv S, Wen J, Chen JF (2015) Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method. Ceram Int 41:14340–14349. https://doi.org/10.1016/j.ceramint.2015.07.067

    Article  CAS  Google Scholar 

  37. Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, Walsh D, Mann S, Roveri N (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188. https://doi.org/10.1002/adfm.200600361

    Article  CAS  Google Scholar 

  38. Iafisco M, Varoni E, Battistella E, Pietronave S, Prat M, Roveri N, Rimondini L (2010) The cooperative effect of size and crystallinity degree on the resorption of biomimetic hydroxyapatite for soft tissue augmentation. Int J Artif Organs 33:765–774. https://doi.org/10.1177/039139881003301101

    Article  CAS  Google Scholar 

  39. Guo X, Gough JE, Xiao P, Liu J, Shen Z (2007) Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J Biomed Mater Res Part A 82A:1022–1032. https://doi.org/10.1002/jbm.a.31200

    Article  CAS  Google Scholar 

  40. Mondal S, Dorozhkin SV, Pal U (2018) Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdis Rev Nanomed Nanobiotechnology 10:1–32. https://doi.org/10.1002/wnan.1504

    Article  CAS  Google Scholar 

  41. Wood W, Martin P (2002) Structures in focus—filopodia. Int J Biochem Cell Biol 34:726–730. https://doi.org/10.1016/S1357-2725(01)00172-8

    Article  CAS  Google Scholar 

  42. Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res Part B Appl Biomater 83 B(1):121–126. https://doi.org/10.1002/jbm.b.30774

  43. Sada E, Kumazawa H, Murakami Y (1991) Hydrothermal synthesis of crystalline hydroxyapatite ultrafine particles. Chem Eng Commun 103:57–64. https://doi.org/10.1080/00986449108910862

    Article  CAS  Google Scholar 

  44. Fang Y, Agrawal DK, Roy DM, Roy R, Brown PW (1992) Ultrasonically accelerated synthesis of hydroxyapatite. J Mater Res 7:2294–2298. https://doi.org/10.1557/JMR.1992.2294

    Article  CAS  Google Scholar 

  45. Borum-Nicholas L, Wilson OC (2003) Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials 24(21):3671–3679. https://doi.org/10.1016/S0142-9612(03)00239-4

  46. Tung MS (1983) Surface properties of hydroxyapatite in fluoride solution. Colloids Surf 6:283–285. https://doi.org/10.1016/0166-6622(83)80019-5

    Article  CAS  Google Scholar 

  47. Leach SA (1960) Electrophoresis of synthetic hydroxyapatite. Arch Oral Biol 3:48–56. https://doi.org/10.1016/0003-9969(60)90018-2

    Article  CAS  Google Scholar 

  48. Tan J, Chen M, Xia J (2009) Water-dispersible hydroxyapatite nanorods synthesized by a facile method. Appl Surf Sci 255:8774–8779. https://doi.org/10.1016/j.apsusc.2009.06.044

    Article  CAS  Google Scholar 

  49. Tanaka H, Yasukawa A, Kandori K, Ishikawa T (1997) Surface modification of calcium hydroxyapatite with hexyl and decyl phosphates. Colloids Surf A Physicochem Eng Asp 125:53–62. https://doi.org/10.1016/S0927-7757(96)03876-9

    Article  CAS  Google Scholar 

  50. Tanaka H, Yasukawa A, Kandori K, Ishikawa T (1997) Modification of calcium hydroxyapatite using alkyl phosphates. Langmuir 13:821–826. https://doi.org/10.1021/la960422f

    Article  CAS  Google Scholar 

  51. Wang S, Wen S, Shen M, Guo R, Cao X, Wang J, Shi X (2011) Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int J Nanomedicine 6:3449–3459

    CAS  Google Scholar 

  52. Huang YT, Imura M, Nemoto Y, Cheng CH, Yamauchi Y (2011) Block-copolymer-assisted synthesis of hydroxyapatite nanoparticles with high surface area and uniform size. Sci Technol Adv Mater 12(4):045005. https://doi.org/10.1088/1468-6996/12/4/045005

  53. Zhou R, Si S, Zhang Q (2012) Water-dispersible hydroxyapatite nanoparticles synthesized in aqueous solution containing grape seed extract. Appl Surf Sci 258:3578–3583. https://doi.org/10.1016/j.apsusc.2011.11.119

    Article  CAS  Google Scholar 

  54. Chen M, Tan J, Lian Y, Liu D (2008) Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal. Appl Surf Sci 254:2730–2735. https://doi.org/10.1016/j.apsusc.2007.10.011

    Article  CAS  Google Scholar 

  55. Verma G, Barick KC, Shetake NG, Pandey BN, Hassan PA (2016) Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Adv 6:77968–77976. https://doi.org/10.1039/c6ra10659e

    Article  CAS  Google Scholar 

  56. Li D, Huang X, Wu Y, Li J, Cheng W, He J, Tian H, Huang Y (2016) Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug. Biomater Sci 4:272–280. https://doi.org/10.1039/c5bm00228a

    Article  CAS  Google Scholar 

  57. Kong L, Mu Z, Yu Y, Zhang L, Hu J (2016) Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv 6:101790–101799. https://doi.org/10.1039/c6ra19351j

    Article  CAS  Google Scholar 

  58. Xiong H, Du S, Ni J, Zhou J, Yao J (2016) Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94:70–83. https://doi.org/10.1016/j.biomaterials.2016.04.004

    Article  CAS  Google Scholar 

  59. Verma G, Shetake NG, Pandrekar S, Pandey BN, Hassan PA, Priyadarsini KI (2020) Development of surface functionalized hydroxyapatite nanoparticles for enhanced specificity towards tumor cells. Eur J Pharm Sci 144:105206. https://doi.org/10.1016/j.ejps.2019.105206

  60. Venkatasubbu GD, Ramasamy S, Avadhani GS, Ramakrishnan V, Kumar J (2013) Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol 235:437–442. https://doi.org/10.1016/j.powtec.2012.11.003

    Article  CAS  Google Scholar 

  61. Victor SP, Paul W, Vineeth VM, Komeri R, Jayabalan M, Sharma CP (2016) Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications. Colloids Surf B Biointerfaces 145:539–547. https://doi.org/10.1016/j.colsurfb.2016.05.067

    Article  CAS  Google Scholar 

  62. Victor SP, Paul W, Jayabalan M, Sharma CP (2014) Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm 16:9033–9042. https://doi.org/10.1039/C4CE01137F

    Article  CAS  Google Scholar 

  63. Suchánková P, Kukleva E, Nykl E, Nykl P, Sakmár M, Vlk M, Kozempel J (2020) Hydroxyapatite and titanium dioxide nanoparticles: radiolabelling and in vitro stability of prospective theranostic nanocarriers for223 ra and99m tc. Nanomaterials 10:1–12. https://doi.org/10.3390/nano10091632

    Article  CAS  Google Scholar 

  64. An L, Li W, Xu Y, Zeng D, Cheng Y, Wang G (2016) Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts. Ceram Int 42:3104–3112. https://doi.org/10.1016/j.ceramint.2015.10.099

    Article  CAS  Google Scholar 

  65. Wang X, Zhuang J, Peng Q, Li Y (2006) Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods. Adv Mater 18:2031–2034. https://doi.org/10.1002/adma.200600033

    Article  CAS  Google Scholar 

  66. Sierra-Pallares J, Huddle T, García-Serna J, Alonso E, Mato F, Shvets I, Luebben O, Cocero MJ, Lester E (2016) Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation. Nano Res 9:3377–3387. https://doi.org/10.1007/s12274-016-1215-6

    Article  CAS  Google Scholar 

  67. Wu SC, Tsou HK, Hsu HC, Hsu SK, Liou SP, Ho WF (2013) A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int 39:8183–8188. https://doi.org/10.1016/j.ceramint.2013.03.094

    Article  CAS  Google Scholar 

  68. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  Google Scholar 

  69. Kien PT, Phu HD, Linh NVV, Quyen TN, Hoa NT (2018) Recent trends in hydroxyapatite (HA) synthesis and the synthesis report of nanostructure HA by hydrothermal reaction. Adv Exp Med Biol 1077:343–354. https://doi.org/10.1007/978-981-13-0947-2_18

    Article  CAS  Google Scholar 

  70. Cao H, Zhang L, Zheng H, Wang Z (2010) Hydroxyapatite nanocrystals for biomedical applications. J Phys Chem C 114:18352–18357. https://doi.org/10.1021/jp106078b

    Article  CAS  Google Scholar 

  71. Zhou H, Yang M, Hou S, Deng L (2017) Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Mater Sci Eng C 71:439–445. https://doi.org/10.1016/j.msec.2016.10.040

    Article  CAS  Google Scholar 

  72. Sadat-Shojai M, Atai M, Nodehi A (2011) Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J Braz Chem Soc 22:571–582. https://doi.org/10.1590/S0103-50532011000300023

    Article  CAS  Google Scholar 

  73. Jiang D, Li D, Xie J, Zhu J, Chen M, Lü X, Dang S (2010) Shape-controlled synthesis of F-substituted hydroxyapatite microcrystals in the presence of Na2EDTA and citric acid. J Colloid Interface Sci 350:30–38. https://doi.org/10.1016/j.jcis.2010.06.034

    Article  CAS  Google Scholar 

  74. Daryan SH, Khavandi A, Javadpour J (2020) Surface engineered hollow hydroxyapatite microspheres: Hydrothermal synthesis and growth mechanisms. Solid State Sci 106:106301. https://doi.org/10.1016/j.solidstatesciences.2020.106301

  75. Aizawa M, Ueno H, Itatani K, Okada I (2006) Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations. J Eur Ceram Soc 26:501–507. https://doi.org/10.1016/j.jeurceramsoc.2005.07.007

    Article  CAS  Google Scholar 

  76. Zhang H, Darvell BW (2010) Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide. Acta Biomater 6:3216–3222. https://doi.org/10.1016/j.actbio.2010.02.011

    Article  CAS  Google Scholar 

  77. Lin K, Chen L, Liu P, Zou Z, Zhang M, Shen Y, Qiao Y, Liu X, Chang J (2013) Hollow magnetic hydroxyapatite microspheres with hierarchically mesoporous microstructure for pH-responsive drug delivery. CrystEngComm 15:2999–3008. https://doi.org/10.1039/c3ce26683d

    Article  CAS  Google Scholar 

  78. Cipreste MF, Peres AM, Cotta AAC, Aragón FH, Antunes ADM, Leal AS, Macedo WAA, Sousa EMBD (2016) Synthesis and characterization of 159Gd-doped hydroxyapatite nanorods for bioapplications as theranostic systems. Mater Chem Phys 181:301–311. https://doi.org/10.1016/j.matchemphys.2016.06.063

  79. Roopalakshmi S, Ravishankar R, Belaldavar S, Prasad RGSV, Phani AR (2017) Investigation of structural and morphological characteristic of hydroxyapatite synthesized by Sol-Gel process. Mater Today Proc 4:12026–12031. https://doi.org/10.1016/j.matpr.2017.09.126

    Article  Google Scholar 

  80. Bigi A, Boanini E, Rubini K (2004) Hydroxyapatite gels and nanocrystals prepared through a sol-gel process. J Solid State Chem 177:3092–3098. https://doi.org/10.1016/j.jssc.2004.05.018

    Article  CAS  Google Scholar 

  81. Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ (2009) Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Curr Appl Phys 9:1459–1462. https://doi.org/10.1016/j.cap.2009.03.024

    Article  Google Scholar 

  82. Ioiţescu A, Vlase G, Vlase T, Ilia G, Doca N (2009) Synthesis and characterization of hydroxyapatite obtained from different organic precursors by sol-gel method. J Therm Anal Calorim 96:937–942. https://doi.org/10.1007/s10973-009-0044-1

    Article  CAS  Google Scholar 

  83. Hashimoto K, Toda Y, Miura K, Udagawa S, Kanazawa T (1995) Synthesis of hydroxyapatite by Sol-Gel method. Phosphorus Res Bull 5:25–30. https://doi.org/10.3363/prb1992.5.0_25

    Article  CAS  Google Scholar 

  84. Gross KA, Chai CS, Kannangara GSK, Ben-Nissan B, Hanley L (1998) Thin hydroxyapatite coatings via sol – gel synthesis. J. Mater Sci: Mater Med 9:839–843. https://link.springer.com/article/10.1023/A:1008948228880

  85. Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ (2009) Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater Sci 32:465–470. https://doi.org/10.1007/s12034-009-0069-x

    Article  CAS  Google Scholar 

  86. Hsieh M-F, Perng L-H, Chin T-S, Perng H-G (2001) Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials 22:2601–2607. https://doi.org/10.1016/S0142-9612(00)00448-8

    Article  CAS  Google Scholar 

  87. Jillavenkatesa A, Condrate RA (1998) Sol-gel processing of hydroxyapatite. J Mater Sci 33:4111–4119. https://doi.org/10.1023/A:1004436732282

    Article  CAS  Google Scholar 

  88. Anee Kuriakose T, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, Betzel C (2004) Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature. J Cryst Growth 263(1–4):517–523. https://doi.org/10.1016/j.jcrysgro.2003.11.057

  89. Rajabi-Zamani AH, Behnamghader A, Kazemzadeh A (2008) Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol-gel method. Mater Sci Eng C 28:1326–1329. https://doi.org/10.1016/j.msec.2008.02.001

    Article  CAS  Google Scholar 

  90. Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ (2009) Sol-gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7:466–470. https://doi.org/10.1016/j.partic.2009.06.008

    Article  CAS  Google Scholar 

  91. Ruban Kumar A, Kalainathan S (2010) Sol-gel synthesis of nanostructured hydroxyapatite powder in presence of polyethylene glycol. Physica B: Condensed Matter 405(13):2799–2802. https://doi.org/10.1016/j.physb.2010.03.067

  92. Ramanan SR, Venkatesh R (2004) A study of hydroxyapatite fibers prepared via sol-gel route. Mater Lett 58:3320–3323. https://doi.org/10.1016/j.matlet.2004.06.030

    Article  CAS  Google Scholar 

  93. Ben-Arfa BAE, Salvado IMM, Ferreira JMF, Pullar RC (2017) Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater Sci Eng C 70:796–804. https://doi.org/10.1016/j.msec.2016.09.054

    Article  CAS  Google Scholar 

  94. Robles-Águila MJ, Reyes-Avendaño JA, Mendoza ME (2017) Structural analysis of metal-doped (Mn, Fe Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method. Ceram Int 43:12705–12709. https://doi.org/10.1016/j.ceramint.2017.06.154

    Article  CAS  Google Scholar 

  95. Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 22:1721–1730. https://doi.org/10.1016/S0142-9612(00)00332-X

    Article  CAS  Google Scholar 

  96. Narayanan R, Seshadri SK, Kwon TY, Kim KH (2008) Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res Part B Appl Biomater 85B(1):279–299. https://doi.org/10.1002/jbm.b.30932

  97. Pattanayak S, Panda S, Dhupal D (2020) Laser micro drilling of 316L stainless steel orthopedic implant: a study. J Manuf Process 52:220–234. https://doi.org/10.1016/j.jmapro.2020.01.042

    Article  Google Scholar 

  98. Rezaei A, Golenji RB, Alipour F, Hadavi MM, Mobasherpour I (2020) Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants. Ceram Int 46:25374–25381. https://doi.org/10.1016/j.ceramint.2020.07.005

    Article  CAS  Google Scholar 

  99. Cicek S, Karaca A, Torun I, Onses MS, Uzer B (2019) The relationship of surface roughness and wettability of 316L stainless steel implants with plastic deformation mechanisms. Mater Today Proc 7:389–393. https://doi.org/10.1016/j.matpr.2018.11.100

    Article  CAS  Google Scholar 

  100. Revilla-León M, Sánchez-Rubio JL,  Pérez-López J, Rubenstein J, Özcan M (2021) Discrepancy at the implant abutment-prosthesis interface of complete-arch cobalt-chromium implant frameworks fabricated by additive and subtractive technologies before and after ceramic veneering. J Prosthet Dent 125(5):795–803. https://doi.org/10.1016/j.prosdent.2020.03.018

  101. Oda H, Itoh T, Sasaki W, Uchimura Y, Taguchi Y, Kaneko K, Sakamoto T, Goto I, Sakuma M, Ishida M, Kikuchi T, Terashita D, Otake H, Morino Y, Shinke T (2020) Cut-off value of strut-vessel distance for the resolution of acute incomplete stent apposition in the early phase using serial optical coherence tomography after cobalt-chromium everolimus-eluting stent implantation. J Cardiol 75:641–647. https://doi.org/10.1016/j.jjcc.2019.12.006

    Article  Google Scholar 

  102. Naito Y, Hasegawa M, Tone S, Wakabayashi H, Sudo A (2020) Minimum 10-year follow-up of cementless total hip arthroplasty with a 32-mm cobalt-chromium head on highly cross-linked polyethylene and a tapered, fiber metal proximally coated femoral stem. J Arthroplasty https://doi.org/10.1016/j.arth.2020.08.055

    Article  Google Scholar 

  103. Seah KHW, Thampuran R, Teoh SH (1998) The influence of pore morphology on corrosion. Corros Sci 40:547–556. https://doi.org/10.1016/S0010-938X(97)00152-2

    Article  CAS  Google Scholar 

  104. Chen J, Hu G, Li T, Chen Y, Gao M, Li Q, Hao L, Jia Y, Wang L, Wang Y (2021) Fusion peptide engineered “statically-versatile” titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration. Biomaterials 264:120446. https://doi.org/10.1016/j.biomaterials.2020.120446

  105. Xiang G, Huang X, Wang T, Wang J, Zhao G, Wang H, Feng Y, Lei W, Hu X (2020) The impact of sitagliptin on macrophage polarity and angiogenesis in the osteointegration of titanium implants in type 2 diabetes. Biomed Pharmacother 126:110078. https://doi.org/10.1016/j.biopha.2020.110078

  106. Toy VE, Dundar S, Bozoglan A (2020) The effects of a nonsteroidal anti-inflammatory drug on the degree of titanium implant osseointegration. J Oral Biol Craniofacial Res 10:333–336. https://doi.org/10.1016/j.jobcr.2020.06.006

    Article  Google Scholar 

  107. Breme J, Zhou Y, Groh L (1995) Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials 16:239–244. https://doi.org/10.1016/0142-9612(95)92123-N

    Article  CAS  Google Scholar 

  108. Zhang JX, Guan RF, Zhang XP (2011) Synthesis and characterization of sol-gel hydroxyapatite coatings deposited on porous NiTi alloys. J Alloys Compd 509:4643–4648. https://doi.org/10.1016/j.jallcom.2011.01.196

    Article  CAS  Google Scholar 

  109. Liu DM, Yang Q, Troczynski T (2002) Sol-gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23:691–698. https://doi.org/10.1016/S0142-9612(01)00157-0

    Article  CAS  Google Scholar 

  110. Roest R, Latella BA, Heness G, Ben-Nissan B (2011) Adhesion of sol-gel derived hydroxyapatite nanocoatings on anodised pure titanium and titanium (Ti6Al4V) alloy substrates. Surf Coatings Technol 205:3520–3529. https://doi.org/10.1016/j.surfcoat.2010.12.030

    Article  CAS  Google Scholar 

  111. Sopyan I, Pusparini E, Ramesh S, Tan CY, Ching YC, Wong YH, Abidin NIZ, Chandran H, Ramesh S, Bang LT (2017) Influence of sodium on the properties of sol-gel derived hydroxyapatite powder and porous scaffolds. Ceram Int 43:12263–12269. https://doi.org/10.1016/j.ceramint.2017.06.088

    Article  CAS  Google Scholar 

  112. Cheng K, Shen G, Weng W, Han G, Ferreira JMF, Yang J (2001) Synthesis of hydroxyapatite/fluoroapatite solid solution by a sol-gel method. Mater Lett 51:37–41. https://doi.org/10.1016/S0167-577X(01)00261-0

    Article  CAS  Google Scholar 

  113. Kaygili O, Dorozhkin SV, Keser S (2014) Synthesis and characterization of Ce-substituted hydroxyapatite by sol-gel method. Mater Sci Eng C 42:78–82. https://doi.org/10.1016/j.msec.2014.05.024

    Article  CAS  Google Scholar 

  114. Zhang W, Cao N, Chai Y, Xu X, Wang Y (2014) Synthesis of nanosize single-crystal strontium hydroxyapatite via a simple sol-gel method. Ceram Int 40:16061–16064. https://doi.org/10.1016/j.ceramint.2014.07.103

    Article  CAS  Google Scholar 

  115. Tautkus S, Ishikawa K, Ramanauskas R, Kareiva A (2020) Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J Solid State Chem 284:121202. https://doi.org/10.1016/j.jssc.2020.121202

  116. Zhang S, Xianting Z, Yongsheng W, Kui C, Wenjian W (2006) Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings. Surf Coatings Technol 200:6350–6354. https://doi.org/10.1016/j.surfcoat.2005.11.033

    Article  CAS  Google Scholar 

  117. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681. https://doi.org/10.1016/S0142-9612(99)00242-2

    Article  CAS  Google Scholar 

  118. Feng B, Weng J, Yang BC, Qu SX, Zhang XD (2003) Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24:4663–4670. https://doi.org/10.1016/S0142-9612(03)00366-1

    Article  CAS  Google Scholar 

  119. Feng B, Weng J, Yang BC, Qu SX, Zhang XD (2004) Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials 25:3421–3428. https://doi.org/10.1016/j.biomaterials.2003.10.044

    Article  CAS  Google Scholar 

  120. Massaro C, Baker MA, Cosentino F, Ramires PA, Klose S, Milella E (2001) Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques. J Biomed Mater Res 58:651–657. https://doi.org/10.1002/jbm.1065

    Article  CAS  Google Scholar 

  121. Lai C, Tang SQ, Wang YJ, Wei K (2005) Formation of calcium phosphate nanoparticles in reverse microemulsions. Mater Lett 59:210–214. https://doi.org/10.1016/j.matlet.2004.08.037

    Article  CAS  Google Scholar 

  122. Phillips MJ, Darr JA, Luklinska ZB, Rehman I (2003) Synthesis and characterization of nano-biomaterials with potential osteological applications. J Mater Sci Mater Med 14:875–882. https://doi.org/10.1023/A:1025682626383

    Article  CAS  Google Scholar 

  123. Lim GK, Wang J, Ng SC, Chew CH, Gan LM (1997) Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 18:1433–1439. https://doi.org/10.1016/S0142-9612(97)00081-1

    Article  CAS  Google Scholar 

  124. Murray MGS, Wang J, Ponton CB, Marquis PM (1995) An improvement in processing of hydroxyapatite ceramics. J Mater Sci 30:3061–3074. https://doi.org/10.1007/BF01209218

    Article  CAS  Google Scholar 

  125. Ma X, Chen Y, Qian J, Yuan Y, Liu C (2016) Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Mater Chem Phys 183:220–229. https://doi.org/10.1016/j.matchemphys.2016.08.021

    Article  CAS  Google Scholar 

  126. Sonoda K, Furuzono T, Walsh D, Sato K, Tanaka J (2002) Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics 151:321–327. https://doi.org/10.1016/S0167-2738(02)00730-0

    Article  CAS  Google Scholar 

  127. Sun Y, Guo G, Wang Z, Guo H (2006) Synthesis of single-crystal HAP nanorods. Ceram Int 32:951–954. https://doi.org/10.1016/j.ceramint.2005.07.023

    Article  CAS  Google Scholar 

  128. Bakhtiari L, Javadpour J, Rezaie HR, Erfan M, Mazinani B, Aminian A (2016) Pore size control in the synthesis of hydroxyapatite nanoparticles: the effect of pore expander content and the synthesis temperature. Ceram Int 42:11259–11264. https://doi.org/10.1016/j.ceramint.2016.04.041

    Article  CAS  Google Scholar 

  129. Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377. https://doi.org/10.1016/j.jpcs.2006.11.026

    Article  CAS  Google Scholar 

  130. Jarudilokkul S, Tanthapanichakoon W, Boonamnuayvittaya V (2007) Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf A Physicochem Eng Asp 296:149–153. https://doi.org/10.1016/j.colsurfa.2006.09.038

    Article  CAS  Google Scholar 

  131. Chen CW, Riman RE, TenHuisen KS, Brown K (2004) Mechanochemical-hydrothermal synthesis of hydroxyapatite from nonionic surfactant emulsion precursors. J Cryst Growth 270:615–623. https://doi.org/10.1016/j.jcrysgro.2004.06.051

    Article  CAS  Google Scholar 

  132. Koumoulidis GC, Katsoulidis AP, Ladavos AK, Pomonis PJ, Trapalis CC, Sdoukos AT, Vaimakis TC (2003) Preparation of hydroxyapatite via microemulsion route. J Colloid Interface Sci 259:254–260. https://doi.org/10.1016/S0021-9797(02)00233-3

    Article  CAS  Google Scholar 

  133. Lim GK, Wang J, Ng SC, Gan LM (1999) Formation of nanocrystalline hydroxyapatite in nonionic surfactant emulsions. Langmuir 15:7472–7477. https://doi.org/10.1021/la981659+

    Article  CAS  Google Scholar 

  134. Bose S, Saha SK (2003) Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem Mater 15:4464–4469. https://doi.org/10.1021/cm0303437

    Article  CAS  Google Scholar 

  135. Huang A, Dai H, Wu X, Zhao Z, Wu Y (2019) Synthesis and characterization of mesoporous hydroxyapatite powder by microemulsion technique. J Mater Res Technol 8:3158–3166. https://doi.org/10.1016/j.jmrt.2019.02.025

    Article  CAS  Google Scholar 

  136. Yang C, Yang P, Wang W, Gai S, Wang J, Zhang M, Lin J (2009) Synthesis and characterization of Eu-doped hydroxyapatite through a microwave assisted microemulsion process. Solid State Sci 11:1923–1928. https://doi.org/10.1016/j.solidstatesciences.2009.07.013

    Article  CAS  Google Scholar 

  137. Lim GK, Wang J, Ng SC, Gan LM (1996) Processing of fine hydroxyapatite powders via an inverse microemulsion route. Mater Lett 28:431–436. https://doi.org/10.1016/0167-577X(96)00095-X

    Article  CAS  Google Scholar 

  138. Shih WJ, Chen YF, Wang MC, Hon MH (2004) Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method. J Cryst Growth 270:211–218. https://doi.org/10.1016/j.jcrysgro.2004.06.023

    Article  CAS  Google Scholar 

  139. Monma H, Kamiya T (1987) Preparation of hydroxyapatite by the hydrolysis of brushite. J Mater Sci 22:4247–4250. https://doi.org/10.1007/BF01132015

    Article  CAS  Google Scholar 

  140. Graham S, Brown PW (1996) Reactions of octacalcium phosphate to form hydroxyapatite. J Cryst Growth 165:106–115. https://doi.org/10.1016/0022-0248(95)00994-9

    Article  CAS  Google Scholar 

  141. Durucan C, Brown PW (2000) Α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J Mater Sci Mater Med 11:365–371. https://doi.org/10.1023/A:1008934024440

    Article  CAS  Google Scholar 

  142. Park HC, Baek DJ, Park YM, Yoon SY, Stevens R (2004) Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J Mater Sci 39:2531–2534. https://doi.org/10.1023/B:JMSC.0000020021.82216.6b

    Article  CAS  Google Scholar 

  143. Ito H, Oaki Y, Imai H (2008) Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase. Cryst Growth Des 8:1055–1059. https://doi.org/10.1021/cg070443f

    Article  CAS  Google Scholar 

  144. Shih WJ, Wang MC, Hon MH (2005) Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J Cryst Growth 275:2339–2344. https://doi.org/10.1016/j.jcrysgro.2004.11.330

    Article  CAS  Google Scholar 

  145. Fulmer MT, Brown PW (1998) Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. J Mater Sci Mater Med 9:197–202. https://doi.org/10.1023/A:1008832006277

    Article  CAS  Google Scholar 

  146. Nakahira A, Sakamoto K, Yamaguchi S, Kaneno M, Takeda S, Okazaki M (1999) Novel synthesis method of hydroxyapatite whiskers by hydrolysis of α-tricalcium phosphate in mixtures of water and organic solvent. J Am Ceram Soc 82:2029–2032. https://doi.org/10.1111/j.1151-2916.1999.tb02035.x

    Article  CAS  Google Scholar 

  147. Sakamoto K, Yamaguchi S, Nakahira A, Kaneno M, Okazaki M, Ichihara J, Tsunawaki Y, Elliott JC (2002) Shape-controlled synthesis of hydroxyapatite from α-tricalcium bis(orthophosphate) in organic-aqueous binary systems. J Mater Sci 37:1033–1041. https://doi.org/10.1023/A:1014316401945

    Article  CAS  Google Scholar 

  148. Rouhani P, Taghavinia N, Rouhani S (2010) Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason Sonochem 17:853–856. https://doi.org/10.1016/j.ultsonch.2010.01.010

    Article  CAS  Google Scholar 

  149. Han Y, Wang X, Li S (2009) A simple route to prepare stable hydroxyapatite nanoparticles suspension. J Nanoparticle Res 11:1235–1240. https://doi.org/10.1007/s11051-008-9507-8

    Article  CAS  Google Scholar 

  150. Jevtic M, Mitric M, Škapin S, Jančar B, Ignjatovic N, Uskokovic D (2008) Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst Growth Des 8(7):2217–2222. https://doi.org/10.1021/cg7007304

  151. McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772–775. https://doi.org/10.1038/44536

    Article  CAS  Google Scholar 

  152. Li H, Li H, Guo Z, Liu Y (2006) The application of power ultrasound to reaction crystallization. Ultrason Sonochem 13:359–363. https://doi.org/10.1016/j.ultsonch.2006.01.002

    Article  CAS  Google Scholar 

  153. Luque de Castro MD, Priego-Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14:717–724. https://doi.org/10.1016/j.ultsonch.2006.12.004

    Article  CAS  Google Scholar 

  154. Giardina MA, Fanovich MA (2010) Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation. Ceram Int 36:1961–1969. https://doi.org/10.1016/j.ceramint.2010.05.008

    Article  CAS  Google Scholar 

  155. Kim W, Saito F (2001) Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2. Ultrason Sonochem 8:85–88. https://doi.org/10.1016/S1350-4177(00)00034-1

    Article  CAS  Google Scholar 

  156. Kuznetsov AV, Fomin AS, Veresov AG, Putlyaev VI, Fadeeva IV, Barinov SM (2008) Hydroxyapatite of platelet morphology synthesized by ultrasonic precipitation from solution. Russ J Inorg Chem 53:1–5. https://doi.org/10.1134/S0036023608010014

    Article  Google Scholar 

  157. Cao LY, Zhang CB, Huang JF (2005) Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram Int 31:1041–1044. https://doi.org/10.1016/j.ceramint.2004.11.002

    Article  CAS  Google Scholar 

  158. Zhang J, Zhan X, Wen X, Song B, Ma L, Peng W (2009) Effects of ultrasonic and dispersants on shape and composition of hydroxyapatite by reflux method. Inorg Mater 45:1362–1365. https://doi.org/10.1134/S0020168509120103

    Article  CAS  Google Scholar 

  159. Li H, Wang J, Bao Y, Guo Z, Zhang M (2003) Rapid sonocrystallization in the salting-out process. J Cryst Growth 247:192–198. https://doi.org/10.1016/S0022-0248(02)01941-3

    Article  CAS  Google Scholar 

  160. Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimli A (2008) Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf A Physicochem Eng Asp 322:29–33. https://doi.org/10.1016/j.colsurfa.2008.02.011

    Article  CAS  Google Scholar 

  161. Leena M, Rana D, Webster TJ, Ramalingam M (2016) Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater Chem Phys 180:166–172. https://doi.org/10.1016/j.matchemphys.2016.05.060

    Article  CAS  Google Scholar 

  162. Yoruç ABH, Aydınoğlu A (2017) The precursors effects on biomimetic hydroxyapatite ceramic powders. Mater Sci Eng C 75:934–946. https://doi.org/10.1016/j.msec.2017.02.049

    Article  CAS  Google Scholar 

  163. Moreno EC, Varughese K (1981) Crystal growth of calcium apatites from dilute solutions. J Cryst Growth 53:20–30. https://doi.org/10.1016/0022-0248(81)90052-X

    Article  CAS  Google Scholar 

  164. Inskeep WP, Silvertooth JC (1988) Kinetics of hydroxyapatite precipitation at pH 7.4 to 8.4. Geochim Cosmochim Acta 52:1883–1893. https://doi.org/10.1016/0016-7037(88)90012-9

  165. Cüneyt Tas A (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 21(14):1429–1438. https://doi.org/10.1016/S0142-9612(00)00019-3

  166. Mavis B, Demirtaş TT, Gümüşderelioǧlu M, Gündüz G, Çolak Ü (2009) Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater 5:3098–3111. https://doi.org/10.1016/j.actbio.2009.04.037

    Article  CAS  Google Scholar 

  167. Demirtaş TT, Kaynak G, Gumuşderelioʇlu M (2015) Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Mater Sci Eng C 49:713–719. https://doi.org/10.1016/j.msec.2015.01.057

    Article  CAS  Google Scholar 

  168. Türk S, Altınsoy G, ÇelebiEfe M, Ipek M, Özacar C (2017) Bindal, Microwave–assisted biomimetic synthesis of hydroxyapatite using different sources of calcium. Mater Sci Eng C 76:528–535. https://doi.org/10.1016/j.msec.2017.03.116

    Article  CAS  Google Scholar 

  169. Qiu C, Xiao X, Liu R (2008) Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol. Ceram Int 34:1747–1751. https://doi.org/10.1016/j.ceramint.2007.06.001

    Article  CAS  Google Scholar 

  170. Chen Z, Wu B, Huang X, Li X, Lin Y (2018) Biomimetic synthesis of hydroxyapatite in presence of imidazole-4,5-dicarboxylic acid grafted chitosan for removing chromium(VI). J Nanotechnol Article ID 5431290. https://doi.org/10.1155/2018/5431290

  171. Harun WSW, Asri RIM, Alias J, Zulkifli FH, Kadirgama K, Ghani SAC, Shariffuddin JHM (2018) A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int 44:1250–1268. https://doi.org/10.1016/j.ceramint.2017.10.162

    Article  CAS  Google Scholar 

  172. Jiang HC, Rong LJ (2006) Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method. Surf. Coatings Technol 201:1017–1021. https://doi.org/10.1016/j.surfcoat.2006.01.015

    Article  CAS  Google Scholar 

  173. Zhang R, Ma PX (1999) Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res 45:285–293. https://doi.org/10.1002/(sici)1097-4636(19990615)45:4%3c285::aid-jbm2%3e3.3.co;2-u

    Article  CAS  Google Scholar 

  174. Ayers RA, Burkes DE, Gottoli G, Yi H-C, Zhim F, Yahia L, Moore JJ (2007) Combustion synthesis of porous biomaterials. J Biomed Mater Res Part A 81A:634–643. https://doi.org/10.1002/jbm.a.31017

    Article  CAS  Google Scholar 

  175. Han Y, Li S, Wang X, Chen X (2004) Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method. Mater Res Bull 39:25–32. https://doi.org/10.1016/j.materresbull.2003.09.022

    Article  CAS  Google Scholar 

  176. Sasikumar S, Vijayaraghavan R (2006) Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method. Trends Biomater Artif Organs 19:70–73

    Google Scholar 

  177. Ghosh SK, Roy SK, Kundu B, Datta S, Basu D (2011) Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater Sci Eng B 176(1):14–21. https://doi.org/10.1016/j.mseb.2010.08.006

  178. Sasikumar S, Vijayaraghavan R (2008) Effect of metal-ion-to-fuel ratio on the phase formation of bioceramic phosphates synthesized by self-propagating combustion. Sci Technol Adv Mater 9(3):035003. https://doi.org/10.1088/1468-6996/9/3/035003

  179. Sasikumar S, Vijayaraghavan R (2008) Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels-A comparative study. Ceram Int 34:1373–1379. https://doi.org/10.1016/j.ceramint.2007.03.009

    Article  CAS  Google Scholar 

  180. Tas AC (2000) Combustion synthesis of calcium phosphate bioceramic powders. J Eur Ceram Soc 20(14–15):2389–2394. https://doi.org/10.1016/S0955-2219(00)00129-1

  181. Aghayan MA, Rodríguez MA (2012) Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP). Mater Sci Eng C 32:2464–2468. https://doi.org/10.1016/j.msec.2012.07.027

    Article  CAS  Google Scholar 

  182. Kingsley JJ, Patil KC (1988) A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater Lett 6:427–432. https://doi.org/10.1016/0167-577X(88)90045-6

    Article  CAS  Google Scholar 

  183. Redepenning J, Schlessinger T, Burnham S, Lippiello L, Miyano J (1996) Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys. J Biomed Mater Res 30:287–294. https://doi.org/10.1002/(SICI)1097-4636(199603)30:3%3c287::AID-JBM3%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  184. Yuan Q, Golden TD (2009) Electrochemical study of hydroxyapatite coatings on stainless steel substrates. Thin Solid Films 518:55–60. https://doi.org/10.1016/j.tsf.2009.06.029

    Article  CAS  Google Scholar 

  185. Stoch A, Brozek A, Kmita G, Stoch J, Jastrz W, Rakowska A (2001) Electrophoretic coating of hydroxyapatite on titanium implants. J Mol Struct 596:191–200. https://doi.org/10.1016/S0022-2860(01)00716-5

    Article  CAS  Google Scholar 

  186. Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (2005) Precipitation of hydroxyapatite nanoparticles: effects of precipitation method on electrophoretic deposition. J Mater Sci Mater Med 16:319–324. https://doi.org/10.1007/s10856-005-0630-0

    Article  CAS  Google Scholar 

  187. Eliaz N, Sridhar TM, Mudali UK, Raj B (2005) Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surf Eng 21:238–242. https://doi.org/10.1179/174329405X50091

    Article  CAS  Google Scholar 

  188. Huang LY, Xu KW, Lu J (2000) A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J Mater Sci Mater Med 11:667–673. https://doi.org/10.1023/A:1008934522363

    Article  CAS  Google Scholar 

  189. Kar A, Raja KS, Misra M (2006) Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf Coatings Technol 201:3723–3731. https://doi.org/10.1016/j.surfcoat.2006.09.008

    Article  CAS  Google Scholar 

  190. Singh J, Chatha SS, Singh H (2020) Characterization and corrosion behavior of plasma sprayed calcium silicate reinforced hydroxyapatite composite coatings for medical implant applications. Ceram Int https://doi.org/10.1016/j.ceramint.2020.08.189

    Article  Google Scholar 

  191. Chen QY, Zou YL, Fu W, Bai XB, Ji GC, Yao HL, Wang HT, Wang F (2019) Wear behavior of plasma sprayed hydroxyapatite bioceramic coating in simulated body fluid. Ceram Int 45:4526–4534. https://doi.org/10.1016/j.ceramint.2018.11.137

    Article  CAS  Google Scholar 

  192. Chambard M, Marsan O, Charvillat C, Grossin D, Fort P, Rey C, Gitzhofer F, Bertrand G (2019) Effect of the deposition route on the microstructure of plasma-sprayed hydroxyapatite coatings. Surf Coatings Technol 371:68–77. https://doi.org/10.1016/j.surfcoat.2019.01.027

    Article  CAS  Google Scholar 

  193. Levingstone TJ, Ardhaoui M, Benyounis K, Looney L, Stokes JT (2015) Plasma sprayed hydroxyapatite coatings: understanding process relationships using design of experiment analysis. Surf Coatings Technol 283:29–36. https://doi.org/10.1016/j.surfcoat.2015.10.044

    Article  CAS  Google Scholar 

  194. Candidato RT, Sokołowski P, Pawłowski L, Lecomte-Nana G, Constantinescu C, Denoirjean A (2017) Development of hydroxyapatite coatings by solution precursor plasma spray process and their microstructural characterization. Surf Coatings Technol 318:39–49. https://doi.org/10.1016/j.surfcoat.2016.10.072

    Article  CAS  Google Scholar 

  195. Deram V, Minichiello C, Vannier RN, Le Maguer A, Pawlowski L, Murano D (2003) Microstructural characterizations of plasma sprayed hydroxyapatite coatings. Surf Coatings Technol 166:153–159. https://doi.org/10.1016/S0257-8972(02)00855-1

    Article  CAS  Google Scholar 

  196. Gkomoza P, Vardavoulias M, Pantelis DI, Sarafoglou C (2019) Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder, for applications in medical implants. Surf Coatings Technol 357:748–758. https://doi.org/10.1016/j.surfcoat.2018.10.044

    Article  CAS  Google Scholar 

  197. Aruna ST, Kulkarni S, Chakraborty M, Kumar SS, Balaji N, Mandal C (2017) A comparative study on the synthesis and properties of suspension and solution precursor plasma sprayed hydroxyapatite coatings. Ceram Int 43:9715–9722. https://doi.org/10.1016/j.ceramint.2017.04.146

    Article  CAS  Google Scholar 

  198. Unabia RB, Bonebeau S, Candidato RT, Jouin J, Noguera O, Pawłowski L (2019) Investigation on the structural and microstructural properties of copper-doped hydroxyapatite coatings deposited using solution precursor plasma spraying. J Eur Ceram Soc 39:4255–4263. https://doi.org/10.1016/j.jeurceramsoc.2019.06.034

    Article  CAS  Google Scholar 

  199. Li H, Ma Y, Zhao Z, Tian Y (2019) Fatigue behavior of plasma sprayed structural-grade hydroxyapatite coating under simulated body fluids. Surf Coatings Technol 368:110–118. https://doi.org/10.1016/j.surfcoat.2019.04.028

    Article  CAS  Google Scholar 

  200. Zhu X, Son DW, Ong JL, Kim K (2003) Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium. J Mater Sci Mater Med 14:629–634. https://doi.org/10.1023/A:1024079109073

    Article  CAS  Google Scholar 

  201. Ji H, Ponton CB, Marquis PM (1992) Microstructural characterization of hydroxyapatite coating on titanium. J Mater Sci Mater Med 3:283–287. https://doi.org/10.1007/BF00705294

    Article  CAS  Google Scholar 

  202. Unabia RB, Bonebeau S, Candidato RT, Pawłowski L (2018) Preliminary study on copper-doped hydroxyapatite coatings obtained using solution precursor plasma spray process. Surf Coatings Technol 353:370–377. https://doi.org/10.1016/j.surfcoat.2018.09.008

    Article  CAS  Google Scholar 

  203. Radin SR, Ducheyne P (1992) Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability. J Mater Sci Mater Med 3:33–42. https://doi.org/10.1007/BF00702942

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Gunjan Verma thanks Dr. A. K. Tyagi, Associate Director, Chemistry Group, BARC, and Dr. P. A. Hassan, Head, Nanotherapeutics and Biosensor Section, BARC, for their constant support and encouragement. Ms. Mural Quadros thanks Mrs. Ozilia Quadros for being a pillar of unwavering support, guidance, and motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quadros, M., Momin, M., Verma, G. (2022). Implications of Synthesis Methodology on Physicochemical and Biological Properties of Hydroxyapatite. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1803-1_15

Download citation

Publish with us

Policies and ethics