Skip to main content

Morphological Characterization of the Wood Polymer Composites

  • Chapter
  • First Online:
Wood Polymer Composites

Abstract

This work addresses the role of various imaging techniques in investigating the morphology of the wood and wood polymer composites (WPC). Micrographs from the scanning electron microscope (SEM) and field emission scanning electron microscope (FESEM) were helpful in assessing the surface changes in the fibre and matrix due to the fibre treatment and coupling agent, interfacial adhesion between the fibre-matrix, failure behavior under various loads and degradation effects due to the aging. Images from the transmission electron microscope (TEM) were effective in determining the dispersion characteristics of additives in the polymer matrix. In addition to the microstructural images, quantitative assessment of the surface changes in the fibre and matrix can be obtained from the laser scanning microscope (LSM) and atomic force microscope (AFM) images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Maadeed MA, Shabana YM, Khanam PN (2014) Processing, characterization and modeling of recycled polypropylene/glass fibre/wood flour composites. Mater Des 58:374–380

    Google Scholar 

  • Ansell MP (2015a) Wood microstructure-A cellular composite. Elsevier Ltd., Amsterdam

    Google Scholar 

  • Ansell MP (2015b) Wood composites. Woodhead Publishing, Cambridge

    Google Scholar 

  • Antov P, Savov V, Neykov N (2020) Sustainable bio-based adhesives for eco-friendly wood composites a review. Wood Res 65:51–62

    Article  CAS  Google Scholar 

  • Askadskii A, Matseevich T, Askadskii A (2019) Structure and properties of wood-polymer composites (WPC). Cambridge Scholars Publishing, Newcastle upon Tyne

    Google Scholar 

  • Avella M, Casale L, Dell’erba R et al (1998) Broom fibers as reinforcing materials for polypropylene-based composites. J Appl Polym Sci 68:1077–1089

    Article  CAS  Google Scholar 

  • Bao M, Li N, Huang C et al (2019) Fabrication, physical–mechanical properties and morphological characterizations of novel scrimber composite. Eur J Wood Wood Prod 77:741–747

    Article  CAS  Google Scholar 

  • Biron M (2018) Thermoplastics and thermoplastic composites. William Andrew, Cambridge

    Google Scholar 

  • Bledzki AK, Sperber VE, Faruk O (2002) Natural and wood fibre reinforcement in polymers. iSmithers Rapra Publishing

    Google Scholar 

  • Cantero G, Arbelaiz A, Mugika F et al (2003) Mechanical behavior of wood/polypropylene composites: effects of fibre treatments and ageing processes. J Reinf Plast Compos 22:37–50

    Article  CAS  Google Scholar 

  • Chawla K, Singh J, Singh R (2020) On recyclability of thermosetting polymer and wood dust as reinforcement in secondary recycled ABS for nonstructural engineering applications. J Thermoplast Compos Mater 0892705720925135

    Google Scholar 

  • Darie R, Bercea M, Kozlowski M, Spiridon I (2011) Evaluation of properties of LDPE/oak wood composites exposed to artificial ageing. Cellul Chem Technol 45:127–135

    CAS  Google Scholar 

  • Deviatkin I, Khan M, Ernst E, Horttanainen M (2019) Wooden and plastic pallets: a review of life cycle assessment (LCA) studies. Sustainability 11:5750

    Article  CAS  Google Scholar 

  • Friedrich D, Luible A (2016) Investigations on ageing of wood-plastic composites for outdoor applications: a meta-analysis using empiric data derived from diverse weathering trials. Constr Build Mater 124:1142–1152. https://doi.org/10.1016/j.conbuildmat.2016.08.123

    Article  Google Scholar 

  • Fürst C, Plank B, Senck S, et al (2018) Bio based silicon carbide ceramics from extruded thermoset based wood polymer composites. In: Proceedings of the ECCM18—18th European conference of composite materials, Athens, Greece, pp 24–28

    Google Scholar 

  • Grammatikos S, Jøsendal HB, Papatzani S, et al (2020) Recycled wood plastic composites as floor panels for ship containers. In: IOP conference series: materials science and engineering. IOP Publishing, p 12006

    Google Scholar 

  • Gulitah V, Liew KC (2019) Morpho-mechanical properties of wood fiber plastic composite (WFPC) based on three different recycled plastic codes. Int J Biobased Plast 1:22–30

    Article  Google Scholar 

  • Guo G (2020) Density reduction behaviors and cell morphology in extrusion of LLDPE/wood fiber composites with physical and chemical blowing agents. J Appl Polym Sci 137:48829

    Article  CAS  Google Scholar 

  • Gwon JG, Lee SY, Chun SJ et al (2010) Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Compos Part A Appl Sci Manuf 41:1491–1497

    Article  Google Scholar 

  • Harris R (2015) Cross laminated timber. Elsevier Ltd., Amsterdam

    Google Scholar 

  • He M, Sun X, Li Z, Feng W (2020) Bending, shear, and compressive properties of three-and five-layer cross-laminated timber fabricated with black spruce. J Wood Sci 66:1–17

    Article  Google Scholar 

  • Hughes M (2015) Plywood and other veneer-based products. Elsevier Ltd., Amsterdam

    Google Scholar 

  • Hünnekens B, Avramidis G, Ohms G et al (2018) Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC). Appl Surf Sci 441:564–574

    Article  Google Scholar 

  • Islam MS, Hamdan S, Hasan M et al (2012) Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC). Int Biodeterior Biodegradation 72:108–113

    Article  CAS  Google Scholar 

  • Kim JK, Pal K (2010) Recent advances in the processing of wood-plastic composites. Springer, Heidelberg

    Google Scholar 

  • Klyosov AA (2007) Wood-plastic composites. Wiley, Hoboken

    Google Scholar 

  • Ko H, Kim JW, Kim HC et al (2020) Esterified PVA-lignin resin by maleic acid applicable for natural fiber reinforced composites. J Appl Polym Sci 137:48836

    Article  CAS  Google Scholar 

  • Kocsis Z, Czigány T (2007) Investigation of the debonding process in wood fiber reinforced polymer composites by acoustic emission. In: Materials science forum. Trans Tech Publ, pp 199–206

    Google Scholar 

  • Krause KC, Sauerbier P, Koddenberg T, Krause A (2018) Utilization of recycled material sources for wood-polypropylene composites: effect on internal composite structure, particle characteristics and physico-mechanical properties. Fibers 6:86

    Article  CAS  Google Scholar 

  • Li R (2000) Environmental degradation of wood-HDPE composite. Polym Degrad Stab 70:135–145. https://doi.org/10.1016/S0141-3910(00)00099-9

    Article  CAS  Google Scholar 

  • Lipovac D, Podrekar N, Burnard MD, Šarabon N (2020) Effect of desk materials on affective states and cognitive performance. J Wood Sci 66:1–12

    Article  Google Scholar 

  • Liu C, Mei C, Xu B et al (2018) Light stabilizers added to the shell of co-extruded wood/high-density polyethylene composites to improve mechanical and anti-UV ageing properties. R Soc Open Sci 5:180074

    Article  Google Scholar 

  • Lopez YM, Gonçalves FG, Paes JB, et al (2020) Resistance of wood plastic composite produced by compression to termites Nasutitermes corniger (Motsch.) and Cryptotermes brevis (Walker). Int Biodeterior Biodegradation 152:104998

    Google Scholar 

  • Mark HF (2013) Encyclopedia of polymer science and technology, concise. Wiley, Hoboken

    Google Scholar 

  • Mertens O, Krause KC, Weber M, Krause A (2018) Performance of thermomechanical wood fibers in polypropylene composites. Wood Mater Sci Eng

    Google Scholar 

  • Niska KO, Sain M (2008) Wood-polymer composites. Elsevier, Amsterdam

    Google Scholar 

  • Ormondroyd GA, Stefanowski B (2015) Fibreboards and their applications. Elsevier Ltd., Amsterdam

    Google Scholar 

  • Panaitescu DM, Nicolae CA, Gabor AR, Trusca R (2020) Thermal and mechanical properties of poly (3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Ind Crops Prod 145:112071

    Article  CAS  Google Scholar 

  • Pizzi A, Papadopoulos AN, Policardi F (2020) Wood composites and their polymer binders. Polymers (Basel) 12:1115

    Article  CAS  Google Scholar 

  • Poletto M (2017) Mechanical, dynamic mechanical and morphological properties of composites based on recycled polystyrene filled with wood flour wastes. Maderas Cienc Y Tecnol 19:433–442

    CAS  Google Scholar 

  • Renner K, Móczó J, Pukánszky B (2011) Polymer/wood composites. Wiley Encycl Compos 1–19

    Google Scholar 

  • Rosu L, Mustata F, Varganici C et al (2019) Thermal behaviour and fungi resistance of composites based on wood and natural and synthetic epoxy resins cured with maleopimaric acid. Polym Degrad Stab 160:148–161

    Article  CAS  Google Scholar 

  • Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Google Scholar 

  • Segerholm BK, Ibach RE, Wålinder MEP (2012) Moisture sorption in artificially aged wood-plastic composites. BioResources 7:1283–1293. https://doi.org/10.15376/biores.7.1.1283-1293

  • Senthilkumar K, Kumar TSM, Chandrasekar M, et al (2019) Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites. Int J Biol Macromol

    Google Scholar 

  • Senthilkumar K, Saba N, Rajini N et al (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr. Build, Mater

    Book  Google Scholar 

  • Shah BL, Selke SE, Walters MB, Heiden PA (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29:655–663

    Article  CAS  Google Scholar 

  • Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763

    Article  CAS  Google Scholar 

  • Sliwa F, Charrier F, Marin G, Malet F (2012) Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Compos Sci Technol 72:1733–1740

    Article  CAS  Google Scholar 

  • Sun X, He M, Li Z (2020) Novel engineered wood and bamboo composites for structural applications: state-of-art of manufacturing technology and mechanical performance evaluation. Constr Build Mater 249:118751

    Article  Google Scholar 

  • Yu M, Zhang G, Saunders T (2020) Wood-derived ultra-high temperature carbides and their composites: a review. Ceram Int 46:5536–5547

    Article  CAS  Google Scholar 

  • Yu Y, Liu R, Huang Y et al (2017) Preparation, physical, mechanical, and interfacial morphological properties of engineered bamboo scrimber. Constr Build Mater 157:1032–1039

    Article  Google Scholar 

  • Yuan Q, Wu D, Gotama J, Bateman S (2008) Wood fiber reinforced polyethylene and polypropylene composites with high modulus and impact strength. J Thermoplast Compos Mater 21:195–208

    Article  CAS  Google Scholar 

  • Zhang J, Li Y, Xing D et al (2019) Reinforcement of continuous fibers for extruded wood-flour/HDPE composites: effects of fiber type and amount. Constr Build Mater 228:116718

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We hereby acknowledge and sincerely appreciate unalloyed supports from the managements of the following institutions: Hindustan Institute of Technology & Science, Tamilnadu, India and King Mongkut’s University of Technology North Bangkok (KMUTNB), Thailand.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrasekar, M., Senthilkumar, K., Senthil Muthu Kumar, T., Sabarish, R., Siengchin, S. (2021). Morphological Characterization of the Wood Polymer Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Kumar, M.H., Siengchin, S. (eds) Wood Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1606-8_5

Download citation

Publish with us

Policies and ethics