Skip to main content

Mechanism of Color Pattern Formation in Insects

  • Chapter
  • First Online:
Pigments, Pigment Cells and Pigment Patterns

Abstract

Insects have various color patterns on their bodies and have played major roles in elucidating the mechanisms of color pattern formation because of their suitability as experimental models. In particular, studies of Drosophila (fruit flies) and butterflies have produced a number of new findings. The logic of generation of a color pattern from the combination of the spatial information of body parts, the genes responsible for those processes, and the mechanism of generating a novel color pattern by cis-regulatory evolution have been elucidated by Drosophila studies. In butterfly studies, attempts to find color pattern genes through genome-wide analysis and functional analysis of color pattern genes using genome editing technology are producing new results. Theoretical models to explain complex eyespot patterning in butterflies have been developed and are awaiting verification with experimental results. A comprehensive model to explain general color pattern formation in insects and validation with empirical data is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre C, Baena-Lopez A, Vincent JP (2014) Patterning and growth control by membrane-tethered wingless. Nature 505:180–185

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Matsuda T, Goto K, Hara K, Ito A, Hirata J, Yatomi J, Kajitani R, Okuno M, Yamaguchi K, Kobayashi M, Takano T, Minakuchi Y, Seki M, Suzuki Y, Yano K, Itoh T, Shigenobu S, Toyoda A, Niimi T (2018) Repeated inversions within a pannier intron drive diversification of intraspecific colour patterns of ladybird beetles. Nat Commun 9:3893

    Article  CAS  Google Scholar 

  • Arnoult L, Su KFY, Manoel D, Minervino C, Magriña J, Gompel N, Prud’homme B (2013) Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science 339:1423–1426

    Article  CAS  PubMed  Google Scholar 

  • Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Montelro A, French V, Carroll SB (1996) Development, plasticity and evolution of butterfly eyespot patterns. Nature 384:236–242

    Article  CAS  PubMed  Google Scholar 

  • Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB (2001) The generation and diversification of butterfly eyespot color patterns. Curr Biol 11:1578–1585

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265:109–114

    Article  CAS  PubMed  Google Scholar 

  • Carson HL, Hardy DE, Spieth HT, Stone WS (1970) The evolutionary biology of the Hawaiian Drosophilidae. In: Essays in evolution and genetics in honor of Theodosius Dobzhansky. North-Holland Publishing, Amsterdam, pp 437–543

    Chapter  Google Scholar 

  • Clarke CA, Sheppard PM (1972) The genetics of the mimetic butterfly Papilio polytes L. Phil Trans R Soc Lond B 263:431–458

    Article  CAS  Google Scholar 

  • Connahs H, Tlili S, van Creij J, Loo TY, Banerjee T, Saunders TE, Monteiro A (2019) Activation of butterfly eyespots by distal-less is consistent with a reaction-diffusion process. Development 146:dev169367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen, London

    Google Scholar 

  • Dhungel B, Ohno Y, Matayoshi R, Iwasaki M, Taira W, Adhikari K, Gurung R, Otaki JM (2016) Distal-less induces elemental color patterns in Junonia butterfly wings. Zool Lett 2:4

    Article  Google Scholar 

  • Dufour HD, Koshikawa S, Finet C (2020) Temporal flexibility of gene regulatory network underlies a novel wing pattern in flies. Proc Natl Acad Sci USA 117:11589–11596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukutomi Y, Koshikawa S (2018) Present and future of research on pattern formation of insects (in Japanese). Sanshi-Konchu Biotech 87:95–102

    Google Scholar 

  • Fukutomi Y, Matsumoto K, Agata K, Funayama N, Koshikawa S (2017) Pupal development and pigmentation process of a polka-dotted fruit fly, Drosophila guttifera (Insecta, Diptera). Dev Genes Evol 227:171–180

    Article  CAS  PubMed  Google Scholar 

  • Fukutomi Y, Matsumoto K, Funayama N, Koshikawa S (2018) Methods for staging pupal periods and measurement of wing pigmentation of Drosophila guttifera. J Vis Exp 131:e56935

    Google Scholar 

  • Fukutomi Y, Kondo S, Toyoda A, Shigenobu S, Koshikawa S (2021) Transcriptome analysis reveals wingless regulates neural development and signaling genes in the region of wing pigmentation of the polka-dotted fruit fly. FEBS J 288:115–126

    Google Scholar 

  • Futahashi R, Osanai-Futahashi M (2021) Pigments in insects. In: Pigments, pigment cells and pigment patterns. Springer, Singapore, pp 3–43

    Google Scholar 

  • Gautier M, Yamaguchi J, Foucaud J, Loiseau A, Ausset A, Facon B, Gschloessl B, Lagnel J, Loire E, Parrinello H, Severac D, Lopez-Roques C, Donnadieu C, Manno M, Berges H, Gharbi K, Lawson-Handley L, Zang LS, Vogel H, Estoup A, Prud’homme B (2018) The genomic basis of colour pattern polymorphism in the harlequin ladybird. Curr Biol 28:3296–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J (2002) Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J 368:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinaux H, Bachem K, Battistara M, Rossi M, Xin Y, Jaenichen R, Le Poul Y, Arnoult L, Kobler JM, Grunwald Kadow IC, Rodermund L, Prud’homme B, Gompel N (2018) Revisiting the developmental and cellular role of the pigmentation gene yellow in Drosophila using a tagged allele. Dev Biol 438:111–123

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Katsuma S, Kuwazaki S, Jouraku A, Fujimoto T, Sahara K, Yasukochi Y, Yamamoto K, Tabunoki H, Yokoyama T, Kadono-Okuda K (2016) Mapping and recombination analysis of two moth colour mutations, black moth and wild wing spot, in the silkworm Bombyx mori. Heredity 116:52–59

    Article  CAS  PubMed  Google Scholar 

  • Iwata M, Otaki JM (2016) Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings. J Insect Physiol 85:32–45

    Article  CAS  PubMed  Google Scholar 

  • Izumitani HF, Kusaka Y, Koshikawa S, Toda MJ, Katoh T (2016) Phylogeography of the subgenus Drosophila (Diptera: Drosophilidae): evolutionary history of faunal divergence between the old and the new worlds. PLoS One 11:e0160051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong S, Rokas A, Carroll SB (2006) Regulation of body pigmentation by the abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125:1387–1399

    Article  CAS  PubMed  Google Scholar 

  • Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Bermingham E, Humphray SJ, Rogers J, Beasley H (2006) A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol 4:e303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RL, Gates J, Scott MP, Carroll SB (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283:532–534

    Article  CAS  PubMed  Google Scholar 

  • Kopp A, Duncun I, Carroll SB (2000) Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408:553–559

    Article  CAS  PubMed  Google Scholar 

  • Koshikawa S (2015) Enhancer modularity and the evolution of new traits. Fly (Austin) 9:155–159

    Article  Google Scholar 

  • Koshikawa S (2020) Evolution of wing pigmentation in Drosophila: diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Diff 62:269–278

    Article  Google Scholar 

  • Koshikawa S, Giorgianni MW, Vaccaro K, Kassner VA, Yoder JH, Werner T, Carroll SB (2015) Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila. Proc Natl Acad Sci USA 112:7524–7529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshikawa S, Matsumoto K, Fukutomi Y (2017) Drosophila guttifera as a model system for unraveling color pattern formation. In: Sekimura T, Nijhout HF (eds) Diversity and evolution of butterfly wing patterns. Springer, Singapore, pp 287–301

    Chapter  Google Scholar 

  • Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR (2014) doublesex is a mimicry supergene. Nature 507:229–232

    Article  CAS  PubMed  Google Scholar 

  • Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, Hubisz MJ, Munn PR, Zhang L, Benson C, Mazo-Vargas A, Danko CG, Counterman BA, Papa R, Reed RD (2019) Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci USA 116:24174–24183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsley EG (1959) Mimetic form and coloration in the Cerambycidae (Coleoptera). Ann Entomol Soc Am 52:125–131

    Article  Google Scholar 

  • Marcus JM, Ramos DM, Monteiro A (2004) Germline transformation of the butterfly Bicyclus anynana. Proc R Soc Lond B 271(Suppl 5):S263–S265

    Google Scholar 

  • Markow TA, O’Grady P (2006) Drosophila: a guide to species identification and use. Academic Press, New York

    Google Scholar 

  • Martin A, Reed RD (2014) Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol 395:367–378

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD, McMillan WO, Reed RD (2012) Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci USA 109:12632–12637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RWR, Zhang L, Papador JD, Martinez-Najera D, Jiggins CD, Kronforst MR, Breuker CJ, Reed RD, Patel NH, McMillan WO, Martin A (2017) Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci USA 114:10701–10706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  • Monteiro A (2015) Origin, development, and evolution of butterfly eyespots. Annu Rev Entomol 60:253–271

    Article  CAS  PubMed  Google Scholar 

  • Monteiro A, Chen B, Ramos DM, Oliver JC, Tong X, Guo M, Wang WK, Fazzino L, Kamal F (2013) Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J Exp Zool B 320:321–331

    Article  CAS  Google Scholar 

  • Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RW, Wu GC, Maroja L, Ferguson L, Hanly JJ, Hines H, Salazar C, Merrill RM, Dowling AJ, Llaurens V, Joron M, WO MM, Jiggins CD (2016) The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijhout HF (1980) Pattern formation on lepidopteran wings: determination of an eyespot. Dev Biol 80:267–274

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (1990) A comprehensive model for colour pattern formation in butterflies. Proc R Soc Lond B 239:81–113

    Article  Google Scholar 

  • Nijhout HF (2001) Elements of butterfly wing patterns. J Exp Zool (Mol Dev Evol) 291:213–225

    Article  CAS  Google Scholar 

  • Nijhout HF (2002) The nature of robustness in development. BioEssays 24:553–563

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (2017) The common developmental origin of eyespots and parafocal elements and a new model mechanism for color pattern formation. In: Sekimura T, Nijhout HF (eds) Diversity and evolution of butterfly wing patterns. Springer, Singapore, pp 3–9

    Chapter  Google Scholar 

  • Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, Sugano S, Fujiyama A, Kosugi S, Hirakawa H, Tabata S, Ozaki K, Morimoto H, Ihara K, Obara M, Hori H, Itoh T, Fujiwara H (2015) A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat Genet 47:405–409

    Article  CAS  PubMed  Google Scholar 

  • O’Grady PM, DeSalle R (2018) Phylogeny of the genus Drosophila. Genetics 209:1–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohno Y, Otaki JM (2015) Spontaneous long-range calcium waves in developing butterfly wings. BMC Dev Biol 15:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otaki JM (2011) Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models. Zool Sci 28:403–413

    Article  Google Scholar 

  • Otaki JM (2017) Self-similarity, distortion waves, and the essence of morphogenesis: a generalized view of color pattern formation in butterfly wings. In: Sekimura T, Nijhout HF (eds) Diversity and evolution of butterfly wing patterns. Springer, Singapore, pp 119–152

    Chapter  Google Scholar 

  • Özsu N, Chan QY, Chen B, Gupta MD, Monteiro A (2017) Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol 429:177–185

    Article  PubMed  CAS  Google Scholar 

  • Parchure A, Vyas N, Mayor S (2018) Wnt and hedgehog: secretion of lipid-modified morphogens. Trends Cell Biol 28:157–170

    Article  CAS  PubMed  Google Scholar 

  • Patterson JT, Wagner RP, Wharton LT (1943) The Drosophilidae of the southwest. University of Texas, Texas

    Google Scholar 

  • Rebeiz M, Williams TM (2017) Using Drosophila pigmentation traits to study the mechanisms of cis-regulatory evolution. Curr Opin Insect Sci 19:1–7

    Article  PubMed  Google Scholar 

  • Reed RD, Serfas MS (2004) Butterfly wing pattern evolution is associated with changes in a notch/distal-less temporal pattern formation process. Curr Biol 14:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NL, Kronforst MR, Chen R, Halder G, Nijhout HF, McMillan WO (2011) optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Roeske MJ, Camino EM, Grover S, Rebeiz M, Williams TM (2018) Cis-regulatory evolution integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network. elife 7:e32273

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers WA, Salomone JR, Tacy DJ, Camino EM, Davis KA, Rebeiz M, Williams TM (2013) Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity. PLoS Genet 9:e1003740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM (2014) A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Dev Biol 385:417–432

    Article  CAS  PubMed  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Setoguchi S, Takamori H, Aotsuka T, Sese J, Ishikawa Y, Matsuo T (2014) Sexual dimorphism and courtship behavior in Drosophila prolongata. J Ethol 32:91–102

    Article  Google Scholar 

  • Sherratt TN (2008) The evolution of Müllerian mimicry. Naturwissenschaften 95:681–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–2177

    Article  PubMed  PubMed Central  Google Scholar 

  • Taira W, Otaki JM (2016) Butterfly wings are three-dimensional: pupal cuticle focal spots and their associated structures in Junonia butterflies. PLoS One 11:e0146348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong X, Lindemann A, Monteiro A (2012) Differential involvement of hedgehog signaling in butterfly wing and eyespot development. PLoS One 7:e51087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Hrycaj S, Podlaha O, Popadic A, Monteiro A (2014) Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana. Dev Biol 394:357–366

    Article  CAS  PubMed  Google Scholar 

  • True JR, Edwards KA, Yamamoto D, Carroll SB (1999) Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. Curr Biol 9:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Van Belleghem SM, Rastas P, Papanicolaou A, Martin SH, Arias CF, Supple MA, Hanly JJ, Mallet J, Lewis JJ, Hines HM, Ruiz M, Salazar C, Linares M, Moreira GRP, Jiggins CD, Counterman BA, McMillan WO, Papa R (2017) Complex modular architecture around a simple toolkit of wing pattern genes. Nat Ecol Evol 1:52

    Article  PubMed  Google Scholar 

  • van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature 534:102–105

    Article  CAS  Google Scholar 

  • Wallbank RW, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, Mallet J, Dasmahapatra KK, Salazar C, Joron M, Nadeau N, McMillan WO, Jiggins CD (2016) Evolutionary novelty in a butterfly wing pattern through enhancer shuffling. PLoS Biol 14:e1002353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werner T, Koshikawa S, Williams TM, Carroll SB (2010) Generation of a novel wing colour pattern by the wingless morphogen. Nature 464:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Steenwinkel T, Jaenike J (2018) The encyclopedia of north American Drosophilids volume 1: Drosophilids of the Midwest and Northeast. Michigan Technological University, Houghton

    Google Scholar 

  • Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB (2008) The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134:610–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittkopp PJ, True JR, Carroll SB (2002) Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129:1849–1858

    Article  CAS  PubMed  Google Scholar 

  • Wittkopp PJ, Carroll SB, Kopp A (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19:495–504

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi J, Banno Y, Mita K, Yamamoto K, Ando T, Fujiwara H (2013) Periodic Wnt1 expression in response to ecdysteroid generates twin-spot markings on caterpillars. Nat Commun 4:1857

    Article  PubMed  CAS  Google Scholar 

  • Yassin A, Delaney EK, Reddiex AJ, Seher TD, Bastide H, Appleton NC, Lack JB, David JR, Chenoweth SF, Pool JE, Kopp A (2016) The pdm3 locus is a hotspot for recurrent evolution of female-limited color dimorphism in Drosophila. Curr Biol 26:2412–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Reed RD (2016) Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns. Nat Commun 15:11769

    Article  CAS  Google Scholar 

  • Zhang L, Mazo-Vargas A, Reed RD (2017) Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci USA 114:10707–10712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ryo Futahashi for giving us an opportunity to write this chapter, Toshiya Ando for helpful comments, and Elizabeth Nakajima for comments and English editing. This chapter is partially based on our review article published in the Japanese language (Fukutomi and Koshikawa 2018). Part of the writing was supported by KAKENHI (17 K19427, 18H02486, 18 J20452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Koshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukutomi, Y., Koshikawa, S. (2021). Mechanism of Color Pattern Formation in Insects. In: Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R., Akiyama, T. (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore. https://doi.org/10.1007/978-981-16-1490-3_12

Download citation

Publish with us

Policies and ethics