Skip to main content

Autonomous Navigation of Mobile Robot with Obstacle Avoidance: A Review

  • Conference paper
  • First Online:
Futuristic Trends in Network and Communication Technologies (FTNCT 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1396))

  • 560 Accesses

Abstract

Navigation of mobile robot with obstacle avoidance is a successful research area owing to its comprehensive applications. Secure and smooth mobile robot navigation through different (static and dynamic) environments for single and multiple robot system to attain its goal with following secure path and producing a most fulfilling end result is the principal purpose of navigation. Many techniques are developed for mobile robot navigation. This paper proposes the soft computing techniques used in mobile robot navigation namely fuzzy logic, neural network and neuro-fuzzy. This paper concludes with strength, limitations, efficiency and tabular data of each methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goris, K.: Autonomous Mobile Robot Mechanical Design (2005)

    Google Scholar 

  2. Vayeda Anshav Bhavesh: Comparison of various obstacle avoidance algorithms. Int. J. Eng. Res. V4(12), 629–632 (2015)

    Article  Google Scholar 

  3. Patle, B.K., Babu, G., Pandey, L.A., Parhi, D.R.K., Jagadeesh, A.: A review: on path planning strategies for navigation of mobile robot. Def. Technol. 15(4), 582–606 (2019). https://doi.org/10.1016/j.dt.2019.04.011

  4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: IEEE International Conference on Robotics and Automation, St. Louis, pp. 500–505 (1985)

    Google Scholar 

  5. Park, K.H., Kim, Y.J., Kim, J.H.: Modular Q-learning based multi-agent cooperation for robot soccer. Rob. Auton. Syst. 35(2), 109–122 (2001). https://doi.org/10.1016/S0921-8890(01)00114-2

    Article  MATH  Google Scholar 

  6. Wang, H., Yu, Y., Yuan, Q.: Application of Dijkstra algorithm in robot path-planning. In: 2011 2nd International Conference on Mechanical Automation Control Engineering MACE 2011 - Proceedings, no. 2010011004, pp. 1067–1069 (2011). https://doi.org/10.1109/mace.2011.5987118

  7. Piaggio, M., Zaccaria, R.: Using roadmaps to classify regions of space for autonomous robot navigation. Rob. Auton. Syst. 25(3–4), 209–217 (1998). https://doi.org/10.1016/S0921-8890(98)00050-5

    Article  Google Scholar 

  8. Takahashi, O., Schilling, R.J.: Motion planning in a plane using generalized voronoi diagrams. IEEE Trans. Robot. Autom. 5(2), 143–150 (1989). https://doi.org/10.1109/70.88035

    Article  Google Scholar 

  9. Choueiry, S., Owayjan, M., Diab, H., Achkar, R.: Mobile robot path planning using genetic algorithm in a static environment. In: 2019 4th International Conference on Advances Computing Tools Engineering Applications ACTEA 2019, pp. 1–6 (2019). https://doi.org/10.1109/actea.2019.8851100

  10. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010). https://doi.org/10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  11. Sai, T., Nakhaeinia, D., Karasfi, B.: Application of fuzzy logic in mobile robot navigation. Fuzzy Log. Control. Concepts, Theor. Appl. (2012). https://doi.org/10.5772/36358

  12. Algabri, M.M.: S.C. Techniques and U Environment, Comparison of Soft Computing Techniques for mobile robot navigation in Unstructured Environment, pp. 1–21 (2012)

    Google Scholar 

  13. Kung, S.Y., Hwang, J.N.: Neural network architectures for robotic applications. IEEE Trans. Robot. Autom. 5(5), 641–657 (1989). https://doi.org/10.1109/70.88082

    Article  Google Scholar 

  14. Zhu, A., Yang, S.X.: Neurofuzzy-based approach to mobile robot navigation in unknown environments. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(4), 610–621 (2007). https://doi.org/10.1109/tsmcc.2007.897499

  15. Van Laarhoven, P.J.M., Reidel, D.: Simulated Annealing: Theory and Applications, vol. 12, pp. 108–111 (1988)

    Google Scholar 

  16. Garcia, M.A.P., Montiel, O., Castillo, O., Sepúlveda, R., Melin, P.: Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. J. 9(3), 1102–1110 (2009). https://doi.org/10.1016/j.asoc.2009.02.014

    Article  Google Scholar 

  17. Teodorovíc, D., Selmíc, M., Davidovíc, T.: Bee colony optimization part II: the application survey. Yugosl. J. Oper. Res. 25(2), 185–219 (2015). https://doi.org/10.2298/YJOR131029020T

    Article  MathSciNet  MATH  Google Scholar 

  18. Ichikawa, Y., Ozaki, N.: Auton. Mobile Robot. 2(1) (1985)

    Google Scholar 

  19. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  20. Kumar, N., Vámossy, Z.: Robot navigation with obstacle avoidance in unknown environment. Int. J. Eng. Technol. 7(4), 2410–2417 (2018). https://doi.org/10.14419/ijet.v7i4.14767

    Article  Google Scholar 

  21. Kumar, N., Takács, M., Vámossy, Z.: Robot navigation in unknown environment using fuzzy logic. In: SAMI 2017 - IEEE 15th International Symposium on Applied Machine Intelligence Informatics, Proceedings, pp. 279–284 (2017). https://doi.org/10.1109/sami.2017.7880317

  22. Singh, R., Bera, T.K.: Obstacle avoidance of mobile robot using fuzzy logic and hybrid obstacle avoidance algorithm. In: IOP Conference on Series Materials Science Engineering, vol. 517, no. 1 (2019). https://doi.org/10.1088/1757-899x/517/1/012009

  23. Yen, C.T., Cheng, M.F.: A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance. Microsyst. Technol. 24(1), 125–135 (2018). https://doi.org/10.1007/s00542-016-3192-9

    Article  Google Scholar 

  24. Pen, V.M., Simon, D.: Logic Control, pp. 337–342 (2005)

    Google Scholar 

  25. Chang, H., Jin, T.: Command fusion based fuzzy controller design for moving obstacle avoidance of mobile robot. Lecture Notes in Electrcal Engineering. LNEE, vol. 235, pp. 905–913 (2013). https://doi.org/10.1007/978-94-007-6516-0_99

  26. Mester, G.: Obstacle avoidance and velocity control of mobile robots. In: SISY 2008 - 6th International Symposium on Intelligent Systems Informatics (2008). https://doi.org/10.1109/SISY.2008.4664918

  27. Méndez, M.Á.O., Madrigal, J.A.F.: Fuzzy logic user adaptive navigation control system for mobile robots in unknown environments. In: 2007 IEEE International Symposium on Intelligence Signal Processing WISP, 2007. https://doi.org/10.1109/wisp.2007.4447633

  28. Hassanzadeh, I., Ghadiri, H., Dalayimilan, R.: Design and implemention of a simple fuzzy algorithm for obstacle avoidance navigation of a mobile robot in dynamic environment. In: Proceeding 5th International Symposium Mechatronics its Application ISMA 2008, pp. 25–30 (2008). https://doi.org/10.1109/ISMA.2008.4648863

  29. Odry, Á., Kecskes, I., Sarcevic, P., Vizvari, Z., Toth, A., Odry, P.: A novel fuzzy-adaptive extended kalman filter for real-time attitude estimation of mobile robots. Sensors (Switzerland) 20(3), 1–29 (2020). https://doi.org/10.3390/s20030803

    Article  Google Scholar 

  30. Janglová, D.: Neural networks in mobile robot motion. Int. J. Adv. Robot. Syst. 1(1), 15–22 (2004). https://doi.org/10.5772/5615

    Article  Google Scholar 

  31. Engedy, I., Horváth, G.: Artificial neural network based mobile robot navigation. In: WISP 2009 - 6th IEEE International Symposium Intelligening Signal Processing - Proceedings, pp. 241–246 (2009). https://doi.org/10.1109/wisp.2009.5286ing557

  32. Qiao, J., Fan, R., Han, H., Ruan, X.: Q-learning based on dynamical structure neural network for robot navigation in unknown environment. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5553, pp. 188–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01513-7_21

    Chapter  Google Scholar 

  33. AbuBaker, A.: A novel mobile robot navigation system using neuro-fuzzy rule-based optimization technique. Res. J. Appl. Sci. Eng. Technol. 4(15), 2577–2583 (2012)

    Google Scholar 

  34. Motlagh, O., Nakhaeinia, D., Tang, S.H., Karasfi, B., Khaksar, W.: Automatic navigation of mobile robots in unknown environments. Neural Comput. Appl. 24(7–8), 1569–1581 (2014). https://doi.org/10.1007/s00521-013-1393-z

    Article  Google Scholar 

  35. Chen, X., Li, Y.: Smooth formation navigation of multiple mobile robots for avoiding moving obstacles. Int. J. Control Autom. Syst. 4(4), 466–479 (2006)

    Google Scholar 

  36. Caceres, C., Rosario, J.M., Amaya, D.: Approach of kinematic control for a nonholonomic wheeled robot using artificial neural networks and genetic algorithms. In: 2017 International Work Conference Bio-Inspired Intelligence Systems Biodiversity Conservation IWOBI 2017 - Proceedings (2017). https://doi.org/10.1109/iwobi.2017.7985533

  37. Singh, M.K., Parhi, D.R.: Path optimisation of a mobile robot using an artificial neural network controller. Int. J. Syst. Sci. 42(1), 107–120 (2011). https://doi.org/10.1080/00207720903470155

    Article  MathSciNet  MATH  Google Scholar 

  38. Araújo, R.: Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments. IEEE Trans. Neural Networks 17(5), 1235–1249 (2006). https://doi.org/10.1109/TNN.2006.877534

    Article  Google Scholar 

  39. Zhu, A., Yang, S.X.: An adaptive neuro-fuzzy controller for robot navigation. Recent Adv. Intell. Control Syst. 277–307 (2009). https://doi.org/10.1007/978-1-84882-548-2_12

  40. Kim, C.J., Chwa, D.: Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network. IEEE Trans. Fuzzy Syst. 23(3), 677–687 (2015). https://doi.org/10.1109/TFUZZ.2014.2321771

    Article  Google Scholar 

  41. Algabri, M., Mathkour, H., Ramdane, H.: Mobile robot navigation and obstacle-avoidance using ANFIS in unknown environment. Int. J. Comput. Appl. 91(14), 36–41 (2014). https://doi.org/10.5120/15952-5400

    Article  Google Scholar 

  42. Godjevac, J., Steele, N.: Neuro-fuzzy control of a mobile robot. Neurocomputing 28(1–3), 127–143 (1999). https://doi.org/10.1016/S0925-2312(98)00119-2

    Article  Google Scholar 

  43. Pothal, J.K., Parhi, D.R.: Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system. Rob. Auton. Syst. 72, 48–58 (2015). https://doi.org/10.1016/j.robot.2015.04.007

    Article  Google Scholar 

  44. Rao, A.M., Ramji, K., Sundara, B.S.K., Rao, S., Vasu, V., Puneeth, C.: Navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm. Int. J. Autom. Comput. 14(3), 285–294 (2017). https://doi.org/10.1007/s11633-016-1042-y

  45. Singh, Y.V., Kumar, B., Chand, S., Sharma, D.: A hybrid approach for requirements prioritization using logarithmic fuzzy trapezoidal approach (LFTA) and artificial neural network (ANN). In: Singh, P.K., Paprzycki, M., Bhargava, B., Chhabra, J.K., Kaushal, N.C., Kumar, Y. (eds.) FTNCT 2018. CCIS, vol. 958, pp. 350–364. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3804-5_26

    Chapter  Google Scholar 

  46. Nayak, N., Nath, V., Singhal, N.: Futuristic Trends in Network and Communication Technologies, vol. 958 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bijli, M., Kumar, N. (2021). Autonomous Navigation of Mobile Robot with Obstacle Avoidance: A Review. In: Singh, P.K., Veselov, G., Pljonkin, A., Kumar, Y., Paprzycki, M., Zachinyaev, Y. (eds) Futuristic Trends in Network and Communication Technologies. FTNCT 2020. Communications in Computer and Information Science, vol 1396. Springer, Singapore. https://doi.org/10.1007/978-981-16-1483-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1483-5_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1482-8

  • Online ISBN: 978-981-16-1483-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics