Skip to main content

Application of Soft Computing in Geotechnical Earthquake Engineering

  • Chapter
  • First Online:
Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics
  • 1127 Accesses

Abstract

Engineers use various soft computing techniques for solving different problems in geotechnical earthquake engineering. This paper will investigate the application of different soft computing techniques {artificial neural network (ANN), support vector machine (SVM), least square support vector machine (LSSVM), genetic programing (GP), relevance vector machine (RVM), multivariate adaptive regression spline (MARS), extreme learning machine (ELM), adaptive neurofuzzy inference system (ANFIS), minimax probability machine regression (MPMR), Gaussian process regression (GPR), adaptive neurofuzzy inference system (ANFIS)} in different fields of geotechnical earthquake engineering such as liquefaction, lateral spreading, seismic slope stability and reliability. The advantages of different soft computing techniques will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad I, El Naggar MH, Khan AN (2007) Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dyn Earthq Eng 27(9):892–905

    Article  Google Scholar 

  • Akbulut S, Hasiloglu AS, Pamukcu S (2004) Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system. Soil Dyn Earthq Eng 24(11):805–814

    Article  Google Scholar 

  • Avval YJ, Derakhshani A (2019) New formulas for predicting liquefaction-induced lateral spreading: model tree approach. Bull Eng Geol Env 78(5):3649–3661

    Article  Google Scholar 

  • Aydogdu I (2017) Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights. Eng Optim 49(3):381–400

    Article  MathSciNet  Google Scholar 

  • Barkhordari K, EntezariZarch H (2015) Prediction of permanent earthquake-induced deformation in earth dams and embankments using artificial neural networks. Civil Eng Infrastruct J 48(2):271–283

    Google Scholar 

  • Baykasoglu A, C¸evik A, Ozbakir L, Kulluk S (2009) Generating prediction rules for liquefaction through data mining. Expert Syst Appl 36(10):12491–12499

    Google Scholar 

  • Baziar MH, Ghorbani A (2005) Evaluation of lateral spreading usingartificial neural networks. J Soil Dyn Earthquake Eng 25:1–9

    Article  Google Scholar 

  • Cabalar AF, Cevik A (2009) Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey. Comput Geosci 35(9):1884–1896

    Article  Google Scholar 

  • Das SK, Samui P, Kim D, Sivakugan N, Biswal R (2011) Lateral displacement of liquefaction induced ground using least square support vector machine. Int J Geotech Earthq Eng (IJGEE) 2(2):29–39

    Article  Google Scholar 

  • Derakhshani A, Foruzan AH (2019) Predicting the principal strong ground motion parameters: a deep learning approach. Appl Soft Comput 80:192–201

    Article  Google Scholar 

  • Eslami A, Mola-Abasi H, TabatabaieShourijeh P (2014) A polynomial model for predicting liquefaction potential from cone penetration test data. Scientia Iranica 21(1):44–52

    Google Scholar 

  • Florido E, Aznarte JL, Morales-Esteban A, Martínez-Álvarez F (2016) Earthquake magnitude prediction based on artificial neural networks: a survey. Croat Oper Res Rev 7(2):159–169

    Google Scholar 

  • Gandomi H, Alavi AH (2012) A new multi-gene genetic programming approach to non-linear system modeling—part II: geotechnical and earthquake engineering problems. Neural Comput Appl 21(1):189–201

    Google Scholar 

  • Gandomi AH, Alavi AH, Mousavi M, Tabatabaei SM (2011) A hybrid computational approach to derive new ground-motion prediction equations. Eng Appl Artif Intell 24(4):717–732

    Article  Google Scholar 

  • Gandomi AH, Fridline MM, Roke DA (2013) Decision tree approach for soil liquefaction assessment. Sci World J

    Google Scholar 

  • Gandomi M, Soltanpour M, Zolfaghari MR, Gandomi AH (2016) Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique. Geosci Front 7(1):75–82

    Article  Google Scholar 

  • Garcia SR, Romo MP (2004) Dynamic soil properties identification using earthquake records: a NN approximation. In: Proceedings of the 13th world conference on earthquake engineering. Vancouver, BC, Canada

    Google Scholar 

  • García SR, Romo MP, Mayoral JM (2007) Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks. Geofísicainternacional 46(1):51–62

    Google Scholar 

  • Garcia SR, Romo MP, Botero E (2008) Aneurofuzzy system to analyze liquefaction-induced lateral spread. Soil Dyn Earthq Eng 28(3):169–180

    Article  Google Scholar 

  • Gnüllü H (2012) Prediction of peak ground acceleration by genetic expression programming and regression: a comparison using likelihood-based measure. Eng Geol 141:92–113

    Google Scholar 

  • Goh TC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480

    Article  Google Scholar 

  • Goh TC (1996) Neural-network modeling of CPT seismic liquefaction data. J Geot Geoenviron Eng 122(1):70–73

    Google Scholar 

  • Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39(1):219–232

    Article  Google Scholar 

  • Goh TC, Goh SH (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34(5):410–421

    Article  Google Scholar 

  • Goh AT, Zhang WG (2014) An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Eng Geol 170:1–10

    Article  Google Scholar 

  • Goharzay M, Noorzad A, Ardakani AM, Jalal M (2017) A worldwide SPT-based soil liquefaction triggering analysis utilizing gene expression programming and Bayesian probabilistic method. J Rock Mech Geotech Eng 9(4):683–693

    Article  Google Scholar 

  • Gordan B, Armaghani DJ, Hajihassani M, Monjezi M (2016) Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng Comput 32(1):85–97

    Article  Google Scholar 

  • Gülkan P, Kalkan E (2002) Attenuation modeling of recent earthquakes in Turkey. J Seismol 6:397–409

    Google Scholar 

  • Gülkan P, Kalkan E (2004) Site-dependent spectra derived from ground-motion records in Turkey. Earthq Spectra 4:1111–1138

    Google Scholar 

  • Hamze-Ziabari SM, Bakhshpoori T (2018) Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5′ and CART algorithms. Appl Soft Comput 68:147–161

    Article  Google Scholar 

  • Hanna M, Ural D, Saygili G (2007) Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dyn Earthq Eng 27(6):521–540

    Article  Google Scholar 

  • Hoang ND, Bui DT (2018) Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: a multi-dataset study. Bull Eng Geol Env 77(1):191–204

    Article  Google Scholar 

  • Javadi AA, Rezania M, Nezhad MM (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. Comput Geotech 33(4–5):222–233

    Article  Google Scholar 

  • Javdanian H, Pradhan B (2019) Assessment of earthquake-induced slope deformation of earth dams using soft computing techniques. Landslides 16(1):91–103

    Article  Google Scholar 

  • Javdanian H, Jafarian Y, Haddad A (2015) Predicting damping ratio of fine-grained soils using soft computing methodology. Arab J Geosci 8(6):3959–3969

    Article  Google Scholar 

  • Jirdehi RA, Mamoudan HT, Sarkaleh HH (2014) Applying GMDH-type neural network and particle warm optimization for prediction of liquefaction induced lateral displacements. Appl Appl Math 9(2)

    Google Scholar 

  • Juang CH, Chen CJ (1999) Cpt-based liquefaction evaluation using artificial neural networks. Comput Aided Civil Infrastruct Eng 14(3):221–229

    Article  Google Scholar 

  • Karthikeyan J, Samui P (2014) Application of statistical learning algorithms for prediction of liquefaction susceptibility of soil based on shear wave velocity. Geomat Nat Haz Risk 5(1):7–25

    Article  Google Scholar 

  • Karthikeyan J, Kim D, Aiyer BG, Samui P (2013) SPT-based liquefaction potential assessment by relevance vector machine approach. Eur J Environ Civ Eng 17(4):248–262

    Article  Google Scholar 

  • Kaveh A, Bakhshpoori T, Hamze-Ziabari SM (2016) Derivation of new equations for prediction of principal ground-motion parameters using M5′ algorithm. J Earthq Eng 20(6):910–930

    Article  Google Scholar 

  • Kaveh A, Hamze-Ziabari SM, Bakhshpoori T (2018) Patient rule-induction method for liquefaction potential assessment based on CPT data. Bull Eng Geol Env 77(2):849–865

    Article  Google Scholar 

  • Kayadelen C (2011) Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Syst Appl 38(4):4080–4087

    Google Scholar 

  • Koopialipoor M, Armaghani DJ, Hedayat A, Marto A, Gordan B (2019) Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput 23(14):5913–5929

    Article  Google Scholar 

  • Kumar V, Venkatesh K, Tiwari RP (2014) Aneurofuzzy technique to predict seismic liquefaction potential of soils. Neural Netw World 24(3):249

    Google Scholar 

  • Kurnaz TF, Kaya Y (2019) A novel ensemble model based on GMDH-type neural network for the prediction of CPT-based soil liquefaction. Environ Earth Sci 78(11):339

    Google Scholar 

  • Lee CY, Chern SG (2013) Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 21(3):318–324

    Google Scholar 

  • Lin HM, Chang SK, Wu JH, Juang CH (2009) Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area: pre-and post-earthquake investigation. Eng Geol 104(3–4):280–289

    Article  Google Scholar 

  • Mittal A, Sharma S, Kanungo DP (2011) A comparison of ANFIS and ANN for the prediction of peak ground acceleration in Indian Himalayan region. In: Proceedings of the international conference on soft computing for problem solving (SocProS 2011) December 20–22. Springer, New Delhi, pp 485–495

    Google Scholar 

  • Muduli PM, Das SK (2013) CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach. Indian Geotech J

    Google Scholar 

  • Muduli PK, Das SK, Bhattacharya S (2014) CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Georisk Assess Manag Risk Eng Syst Geohazards 8(1):14–28

    Google Scholar 

  • Najjar Y, Ali H (1998) On the use of BPNN in liquefaction potential assessment tasks. In: Attoh-Okine NO (ed) Proceedings of the international workshop on artificial intelligent and mathematical methods in pavement and geomechanical systems, pp 55–63

    Google Scholar 

  • Nama S, Saha AK, Ghosh S (2017) Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-Ф backfill. Appl Soft Comput 52:885–897

    Article  Google Scholar 

  • Narayanakumar S, Raja K (2016) A BP artificial neural network model for earthquake magnitude prediction in Himalayas, India. Circuits Syst 7(11):3456–3468

    Article  Google Scholar 

  • Pal M (2006) Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Meth Geomech 30(10):983–996

    Article  MATH  Google Scholar 

  • Panakkat A, Adeli H (2007) Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int J Neural Syst 17(01):13–33

    Article  Google Scholar 

  • Peng HS, Deng J, Gu DS (2005) Earth slope reliability analysis under seismic loadings using neural network. J Cent South Univ Technol 12(5):606–610

    Article  Google Scholar 

  • Rahman MS, Wang J (2002) Fuzzy neural network models for liquefaction prediction. Soil Dyn Earthq Eng 22(8):685–694

    Article  Google Scholar 

  • Ramakrishnan D, Singh TN, Purwar N, Barde KS, Gulati A, Gupta S (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Comput Geosci 12(4):491–501

    Article  Google Scholar 

  • Rezaei S, Choobbasti AJ (2014) Liquefaction assessment using microtremor measurement, conventional method and artificial neural network (Case study: Babol, Iran). Front Struct Civ Eng 8(3):292–307

    Article  Google Scholar 

  • Samui P (2011) Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT. Nat Hazards 59(2):811–822

    Article  Google Scholar 

  • Samui P (2013) Liquefaction prediction using support vector machine model based on cone penetration data. Front Struct Civ Eng 7(1):72–82

    Article  MathSciNet  Google Scholar 

  • Samui P (2014) Vector machine techniques for modeling of seismic liquefaction data. Ain Shams Eng J 5(2):355–360

    Article  MathSciNet  Google Scholar 

  • Samui P, Hariharan R (2014) Modeling of SPT seismic liquefaction data using minimax probability machine. Geotech Geol Eng 32(3):699–703

    Article  Google Scholar 

  • Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11(1)

    Google Scholar 

  • Samui P, Kothari DP (2012) A multivariate adaptive regression spline approach for prediction of maximum shear modulus and minimum damping ratio. Eng J 16(5):69–78

    Article  Google Scholar 

  • Samui P, Karthikeyan J (2014) The use of a relevance vector machine in predicting liquefaction potential. Indian Geotech J 44(4):458–467

    Article  Google Scholar 

  • Samui P, Kim D, Sitharam TG (2011) Support vector machine for evaluating seismic-liquefaction potential using shear wave velocity. J Appl Geophys 73(1):8–15

    Article  Google Scholar 

  • Samui P, Bhattacharya S, Sitharam TG (2012) Support vector classifiers for prediction of pile foundation performance in liquefied ground during earthquakes. Int J Geotech Earthq Eng (IJGEE) 3(2):42–59

    Article  Google Scholar 

  • Samui P, Jagan J, Hariharan R (2016) An alternative method for determination of liquefaction susceptibility of soil. Geotech Geol Eng 34(2):735–738

    Article  Google Scholar 

  • Shahri AA (2016) Assessment and prediction of liquefaction potential using different artificial neural network models: a case study. Geotech Geol Eng 34(3):807–815

    Article  Google Scholar 

  • Sharma D, Chandra P (2019) A comparative analysis of soft computing techniques in software fault prediction model development. Int J Inform Technol 11(1):37–46

    Article  Google Scholar 

  • Tesfamariam S, Najjaran H (2007) Fuzzy template based modeling for assessing earthquake induced liquefaction. In: 2007 IEEE international conference on systems, man and cybernetics, pp 593–597

    Google Scholar 

  • Thomas S, Pillai GN, Pal K, Jagtap P (2016) Prediction of ground motion parameters using randomized ANFIS (RANFIS). Appl Soft Comput 40:624–634

    Article  Google Scholar 

  • Thomas S, Pillai GN, Pal K (2017) Prediction of peak ground acceleration using ϵ-SVR, ν-SVR and Ls-SVR algorithm. Geomat Nat Haz Risk 8(2):177–193

    Article  Google Scholar 

  • Tsompanakis Y, Lagaros ND, Psarropoulos PN, Georgopoulos EC (2009) Simulating the seismic response of embankments via artificial neural networks. Adv Eng Softw 40(8):640–651

    Article  MATH  Google Scholar 

  • Turel M (2011) Soft computing based spatial analysis of earthquake triggered coherent landslides. Doctoral dissertation, Georgia Institute of Technology

    Google Scholar 

  • Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74:265–291

    Article  Google Scholar 

  • Venkatesh K, Kumar V, Tiwari RP (2013) Appraisal of liquefaction potential using neural network and neuro fuzzy approach. Appl Artif Intell 27(8):700–720

    Article  Google Scholar 

  • Wang J, Rahman MS (1999) A neural network model for liquefaction induced horizontal ground displacement. J Soil Dyn Earthquake Eng 18:555–568

    Article  Google Scholar 

  • Xu C, Shen L, Wang G (2016) Soft computing in assessment of earthquake-triggered landslide susceptibility. Environ Earth Sci 75(9):767

    Google Scholar 

  • Xue X, Liu E (2017) Seismic liquefaction potential assessed by neural networks. Environ Earth Sci 76(5):192

    Google Scholar 

  • Yazdi JS, Kalantary F, Yazdi HS (2012) Prediction of liquefaction potential based on CPT up-sampling. Comput Geosci 44:10–23

    Article  Google Scholar 

  • Zadeh LA (1992) Foreword proceedings of the second international conference on fuzzy logic and neural networks. Iizouka, Japan, pp 13–14

    Google Scholar 

  • Zaré M, Bard PY (2002) Strong motion data set of Turkey: data processing and site classification. Soil Dyn Earthq Eng 22:703–718

    Google Scholar 

  • Zhang W, Goh ATC (2016) Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression

    Google Scholar 

  • Zhao HB, Ru ZL, Yin S (2007) Updated support vector machine for seismic liquefaction evaluation based on the penetration tests. Mar Georesour Geotechnol 25(3–4):209–220

    Article  Google Scholar 

  • Zhiyong Z, Xi Z (1999) A study of ANN based seismic response recognising system for pile foundation bridge pier. J North Jiaotong Univ (6):20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijush Samui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samui, P. (2021). Application of Soft Computing in Geotechnical Earthquake Engineering. In: Sitharam, T., Jakka, R., Kolathayar, S. (eds) Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-1468-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1468-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1467-5

  • Online ISBN: 978-981-16-1468-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics