Skip to main content

A Comparative Study of Nonlinear Convection in a Confined Fluid Overlying a Porous Layer

  • Conference paper
  • First Online:
New Trends in Applied Analysis and Computational Mathematics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1356))

  • 171 Accesses

Abstract

The alternating direction implicit method (ADI method) has been used to investigate a comparative study between the Darcy (DM), Brinkman-extended Darcy (BM) and Brinkman–Forchheimer-extended Darcy models (BFM) of free convection in a cavity containing a fluid layer overlying a porous layer saturated with the same fluid. The two-dimensional enclosure is heated from below and cooled from above, while the other two vertical sides are adiabatic. The Beavers–Joseph empirical boundary condition at the fluid/porous layer interface is employed, while the Darcy model is used to simulate momentum transfer in a porous medium. In case of the BM and BFM models, the two regions are coupled by matching the velocity and stress components at the interface. Numerical simulations have revealed that all three models have yielded almost same results for Darcy numbers up to about \(10^{-4}\). For higher Darcy numbers, the BFM model can be used to simulate momentum transfer as it accounts for the effects of inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.M. Banjer, A.A. Abdullah, Convection in superposed fluid and porous layers in the presence of a vertical magnetic field. WSEAS Trans. Fluid Mech. 5(3), 175–185 (2010)

    Google Scholar 

  2. G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  3. G.S. Beavers, E.M. Sparrow, R.A. Magnuson, Experiments on coupled parallel flows in a channel and a bounding porous medium. J. Basic Eng. 92, 843–848 (1970)

    Article  Google Scholar 

  4. C. Beckermann, S. Ramadhyan, R. Viskanta, Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. ASME J. Heat Trans. 109, 363–370 (1987)

    Article  Google Scholar 

  5. C. Beckermann, R. Viskanta, S. Ramadhyani, Natural convection in vertical enclosures containing simultaneously fluid and porous layers. J. Fluid Mech. 186, 257–284 (1988)

    Article  Google Scholar 

  6. H.C. Brinkman, A calculation of the viscous force exerted by flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  7. A.F. Bukhari, A spectral eigenvalue method for multi-layered continua. Ph.D. thesis, University of Glasgow (1997)

    Google Scholar 

  8. M. Carr, Penetrative convection in a superposed porous-medium-fluid layer via internal heating. J. Fluid Mech. 509, 305–329 (2004)

    Article  MathSciNet  Google Scholar 

  9. M. Carr, B. Straughan, Penetrative convection in a fluid overlying a porous layer. Adv. Water Res. 26, 263–276 (2003)

    Article  Google Scholar 

  10. F. Chen, C.F. Chen, Onset of finger convection in a horizontal porous layer underlying a fluid layer. J. Heat Transf. 110, 403–409 (1988)

    Article  Google Scholar 

  11. F. Chen, C.F. Chen, Experimental investigation of convective instability in a superposed fluid and porous layer when heated from below. J. Fluid Mech. 207, 311–321 (1989)

    Article  Google Scholar 

  12. F. Chen, C.F. Chen, Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97–119 (1992)

    Article  Google Scholar 

  13. S. Ergun, Fluid flow through packed columns. Chem. Eng. Progr. 48(2), 89–94 (1952)

    Google Scholar 

  14. P. Forchheimer, Wasserbewegung durch Boden. Zeits. V. deutsch. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  15. S.C. Hirata, B. Goyeau, D. Gobin, M. Carr, R.M. Cotta, Stability analysis of natural convection in adjacent fluid and porous layer: influence of interfacial modeling. Int. J. Heat Mass Trans. 50, 1356–1367 (2007)

    Article  Google Scholar 

  16. S.J. Kim, C.Y. Choi, Convective heat transfer in porous and overlying fluid layers heated flow. Int. J. Heat Mass Trans. 39(2), 319–329 (1996)

    Article  Google Scholar 

  17. G.D. Mallinson, G. De Vahl Davis, The method of the false transient for the solution of coupled elliptic equations. J. Comput. Phys. 12, 435–461 (1973)

    Article  Google Scholar 

  18. G. McKay, Onset of buoyancy-driven convection in superposed reacting fluid and porous layers. J. Eng. Math. 33, 31–46 (1998)

    Article  MathSciNet  Google Scholar 

  19. G. Neale, W. Nader, Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flow within a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)

    Article  Google Scholar 

  20. D.A. Nield, Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81, 513–522 (1977)

    Article  Google Scholar 

  21. D.A. Nield, The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)

    Article  MathSciNet  Google Scholar 

  22. D.A. Nield, A. Bejan, Convection in Porous Media (Springer, New York, 2013)

    Book  Google Scholar 

  23. T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura, H. Ozoe, Numerical analysis of natural convection in a rectangular horizontal cavity divided into fluid and porous region. Int. J. Heat Mass Transf. 26, 889–898 (1986)

    MATH  Google Scholar 

  24. D. Poulikakos, A. Bajan, B. Selimos, K. Blake, High Rayleigh number convection in a fluid overlaying a porous bed. Int. J. Heat Fluid Flow 7(2), 109–116 (1986)

    Article  Google Scholar 

  25. A.A. Samarskii, V.B. Andreyev, On a high-accuracy difference scheme for elliptic equation with several space variables. USSR Comput. Math. Math. Phys. 3, 1373–1382 (1963)

    Article  Google Scholar 

  26. S.B. Sathe, W.Q. Lin, T.W. Tang, Natural convection in enclosures containing an insulation with permeable fluid-porous interface. Int. J. Heat Fluid Flow 9, 389–395 (1988)

    Article  Google Scholar 

  27. A.K. Singh, G.R. Thorpe, Natural convection in a confined fluid overlying a porous layer-a comparison study of different models. Indian J. Pure Appl. Math. 5(3), 81–95 (1994)

    MATH  Google Scholar 

  28. B. Straughan, Surface-tension-driven convection in a fluid overlying a porous layer. J. Comput. Phys. 170, 320–337 (2001)

    Article  Google Scholar 

  29. B. Straughan, Effect of property variation and modeling on convection in a fluid overlying a porous layer. Int. J. Numer. Anal. Meth. Geomech. 26, 75–97 (2002)

    Article  Google Scholar 

  30. M.W. Taslim, U. Narusawa, Thermal stability of horizontally superposed porous and fluid layers. ASME J. Heat Transf. 111, 357–362 (1989)

    Article  Google Scholar 

  31. L.H. Thomas, Watson Scientific Computing Laboratory (Columbia University, New York, 1949)

    Google Scholar 

  32. J. Valencia-Lopez, J. Ochoa-Tapia, A study of buoyancy-driven flow in a confined fluid overlying a porous layer. Int. J. Heat Mass Transf. 44, 4725–4736 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul K. Srivastava .

Editor information

Editors and Affiliations

Appendices

Appendix

Mathematical Modeling of Governing Equations in Vector Form

Following paper of Kim and Choi [16].

For fluid region:

Conservation equation of mass, momentum, and energy equation for fluid region

$$\begin{aligned} \nabla \cdot \overrightarrow{q}= & {} 0, \end{aligned}$$
(27)
$$\begin{aligned} \overrightarrow{q}\cdot \nabla \overrightarrow{q}= & {} - \frac{1}{\rho _{f}}\nabla p+\nu _{f}\nabla ^{2}\overrightarrow{q}+\overrightarrow{g}\end{aligned}$$
(28)
$$\begin{aligned} \overrightarrow{q}\cdot \nabla T= & {} \alpha _{f}\nabla ^{2} T \end{aligned}$$
(29)

where \(\overrightarrow{q}\) represents velocity similarly T, temperature, p, pressure, and all other symbols are defined above.

For porous region:

Brinkman–Forchheimer-extended Darcy model

$$\begin{aligned} \nabla \cdot \overrightarrow{q}= & {} 0, \end{aligned}$$
(30)
$$\begin{aligned} \overrightarrow{q}\cdot \nabla \overrightarrow{q}= & {} -\frac{1}{\rho _{f}}\nabla p\nu _{eff}\nabla ^{2}\overrightarrow{q} -\frac{\nu _{f}}{K}\overrightarrow{q}-\frac{F}{\sqrt{K} } \left| {\overrightarrow{q}} \right| \overrightarrow{q}+g \end{aligned}$$
(31)
$$\begin{aligned} \overrightarrow{q}\cdot \nabla T= & {} \alpha _{eff}\nabla ^{2} T \end{aligned}$$
(32)

where the symbols used defined above, \(\alpha _{eff}=k_{eff}\nabla ^{2}T\) is effective thermal diffusivity.

Following [22]

Darcy model: It is enough to show only momentum equation (other two are same)

$$\begin{aligned} \overrightarrow{q}=-\frac{K}{\mu }\nabla p \end{aligned}$$
(33)

Brinkman’s Model:

$$\begin{aligned} \nabla p=-\frac{\mu }{K}\overrightarrow{q}+\tilde{\mu }\nabla ^{2}\overrightarrow{q}, \end{aligned}$$
(34)

where \(\mu \) is the dynamic viscosity of the fluid, \(\tilde{\mu }\) is effective viscosity, K is intrinsic permeability of porous medium.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Srivastava, A.K. (2021). A Comparative Study of Nonlinear Convection in a Confined Fluid Overlying a Porous Layer. In: Paikray, S.K., Dutta, H., Mordeson, J.N. (eds) New Trends in Applied Analysis and Computational Mathematics. Advances in Intelligent Systems and Computing, vol 1356. Springer, Singapore. https://doi.org/10.1007/978-981-16-1402-6_2

Download citation

Publish with us

Policies and ethics