Skip to main content

High-Pressure Single-Molecule Studies on Non-canonical Nucleic Acids and Their Interactions

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

High hydrostatic pressure affects the structure, dynamics, and the stability of biomolecular systems. Therefore, in order to describe the entire energy and conformational landscape and the set of parameters required for a comprehensive understanding of the general phase behavior of biomolecular systems, one needs to scan the full thermodynamic parameter space, including high pressure. In addition, high hydrostatic pressures are encountered in organisms living in the deep sea and in subseafloor ecosystems, which constitute a significant portion of the Earth’s biosphere and where pressures up to the 1000 bar level or more prevail. High pressure is also a key parameter in the context of exploring the origin and the physical limits of life on Earth or on other planets and moons. In this review, we lay out the conceptual framework for exploring conformational fluctuations, dynamical properties, and the activity of biomolecular systems using pressure perturbation, focusing in particular on non-canonical nucleic acid systems, such as DNA hairpins, G-quadruplexes and i-motifs, and their interactions. Moreover, the effects of cosolutes (salts, osmolytes), macromolecular crowding, and intrinsically disordered peptides on the conformational dynamics of non-canonical nucleic acid structures at ambient and high-pressure conditions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Download references

Acknowledgments

This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 801459 – FP-RESOMUS and was funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2033 – 390677874 – RESOLV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Winter .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, S.K., Knop, JM., Winter, R. (2022). High-Pressure Single-Molecule Studies on Non-canonical Nucleic Acids and Their Interactions. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics