Skip to main content

Protective Effect of Quercetin, Luteolin, and Fisetin via Stimulating the p53-Mediated Signaling in Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 21 Accesses

Abstract

Cancer, a leading cause of global mortality, has been estimated to cause more deaths than all coronary heart disease or stroke. Mutation in the p53 gene is one of the major etiologies leading to carcinogenesis. p53 regarded as the “Guardian of the genome” regulates a large number of events including cell cycle arrest and apoptosis, among others. Treatment of cancer has mostly been confined to chemotherapy, radiotherapy, and surgery. However, these therapies can cause a severe threat to the life of the individual. Natural plant products have also been used due to their protective effect against various types of cancer. Quercetin, Luteolin, and Fisetin are polyphenolic compounds widely found in fruits and vegetables. They have been reported to possess antioxidant, anti-inflammatory, and antiproliferative properties among others. These properties make them a good candidate as an anticancer agent. Quercetin, Luteolin, and Fisetin have been shown to have a positive effect on the p53 expression. p53 shows potential in suppressing the expression of NF-κB, thereby repressing inflammation. Quercetin-, Luteolin-, and Fisetin-mediated stimulation of p53 causes arrest of cancerous cells at the various checkpoint of the cell cycle which further leads to apoptosis of cancerous cells. This section, therefore, discusses the anticancerous effect of quercetin, Luteolin, and Fisetin on the p53-mediated signaling in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D (2019) Flavonoids in cancer and apoptosis. Cancers 11(1):28

    Article  CAS  Google Scholar 

  • Achanta G, Huang P (2004) Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res 64(17):6233–6239

    Article  CAS  Google Scholar 

  • Afzal SM, Vafa A, Rashid S, Barnwal P, Shahid A, Shree A, Islam J, Ali N, Sultana S (2021) Protective effect of hesperidin against N, N′-dimethylhydrazine induced oxidative stress, inflammation, and apoptotic response in the colon of Wistar rats. Environ Toxicol 36(4):642–653

    Article  CAS  Google Scholar 

  • Bai L, Zhu W-G (2006) p53: structure, function and therapeutic applications. J Cancer Mol 2(4):141–153

    CAS  Google Scholar 

  • Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6):439–459

    Article  Google Scholar 

  • Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M (2018) Quercetin: a functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 233(9):6544–6560

    Article  CAS  Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    Article  CAS  Google Scholar 

  • George VC, Dellaire G, Rupasinghe HV (2017) Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 45:1–14

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908

    Article  CAS  Google Scholar 

  • Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M (2019) Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother 112:108612

    Article  CAS  Google Scholar 

  • Islam J, Shree A, Afzal SM, Vafa A, Sultana S (2020) Protective effect of Diosmin against benzo(a)pyrene-induced lung injury in Swiss Albino Mice. Environ Toxicol 35(7):747–757. https://doi.org/10.1002/tox.22909

    Article  CAS  PubMed  Google Scholar 

  • Islam J, Shree A, Vafa A, Afzal SM, Sultana S (2021) Taxifolin ameliorates Benzo[a]pyrene-induced lung injury possibly via stimulating the Nrf2 signalling pathway. Int Immunopharmacol 96:107566. https://doi.org/10.1016/j.intimp.2021.107566

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    Article  CAS  Google Scholar 

  • Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS (2019) Fisetin and quercetin: promising flavonoids with Chemopreventive potential. Biomol Ther 9(5):174

    CAS  Google Scholar 

  • Khan H, Reale M, Ullah H, Sureda A, Tejada S, Wang Y, Zhang Z-J, Xiao J (2020) Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 38:107385

    Article  CAS  Google Scholar 

  • Kim H-J, Kim S-K, Kim B-S, Lee S-H, Park Y-S, Park B-K, Kim S-J, Kim J, Choi C, Kim J-S (2010) Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J Agric Food Chem 58(15):8643–8650

    Article  CAS  Google Scholar 

  • Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, Tian B (2011) Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol 108(2):84–93

    Article  CAS  Google Scholar 

  • Li J, Qu W, Cheng Y, Sun Y, Jiang Y, Zou T, Wang Z, Xu Y, Zhao H (2014) The inhibitory effect of intravesical Fisetin against bladder cancer by induction of p53 and down-regulation of NF-kappa B pathways in a rat bladder carcinogenesis model. Basic Clin Pharmacol Toxicol 115(4):321–329

    Article  CAS  Google Scholar 

  • Li Y, Zhang T, Chen GY (2018) Flavonoids and colorectal cancer prevention. Antioxidants 7(12):187

    Article  Google Scholar 

  • Maurya AK, Vinayak M (2015) Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep 42(9):1419–1429

    Article  CAS  Google Scholar 

  • Naugler WE, Karin M (2008) NF-κB and cancer—identifying targets and mechanisms. Curr Opin Genet Dev 18(1):19–26

    Article  CAS  Google Scholar 

  • Panche A, Diwan A, Chandra S (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  Google Scholar 

  • Pandurangan AK, Esa NM (2014) Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac J Cancer Prev 15(14):5501–5508

    Article  Google Scholar 

  • Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S (2010) The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 649(1–3):84–91

    Article  Google Scholar 

  • Schneider G, Krämer OH (2011) NFκB/p53 crosstalk—a promising new therapeutic target. Biochim Biophys Acta (BBA) Rev Cancer 1815(1):90–103

    Article  CAS  Google Scholar 

  • Sethi G, Sung B, Aggarwal BB (2008) Nuclear factor-κB activation: from bench to bedside. Exp Biol Med 233(1):21–31

    Article  CAS  Google Scholar 

  • Shree A, Hasan S, Islam J, Vafa A, Afzal S, Barnwal P, Siddiqi A, Ali R, Sultana S (2018) Colono-protective potentiality of Methanolic bark extract of Acacia catechu: a medicinal plant against 1, 2-Dimethylhydrazine-induced toxicity in Wistar rats. J Environ Pathol Toxicol Oncol 37(4):273–289

    Article  Google Scholar 

  • Shree A, Islam J, Vafa A, Mohammad Afzal S, Sultana S (2020) Gallic acid prevents 1, 2-Dimethylhydrazine induced colon inflammation, toxicity, mucin depletion, and goblet cell disintegration. Environ Toxicol 35(6):652–664. https://doi.org/10.1002/tox.22900

    Article  CAS  PubMed  Google Scholar 

  • Shree A, Islam J, Sultana S (2021) Quercetin ameliorates reactive oxygen species generation, inflammation, mucus depletion, goblet disintegration, and tumor multiplicity in colon cancer: probable role of adenomatous polyposis coli, β-catenin. Phytother Res 35(4):2171–2184. https://doi.org/10.1002/ptr.6969

    Article  CAS  PubMed  Google Scholar 

  • Tergaonkar V, Perkins ND (2007) p53 and NF-κB crosstalk: IKKα tips the balance. Mol Cell 26(2):158–159

    Article  CAS  Google Scholar 

  • Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I (2002) p53 stabilization is decreased upon NFκB activation: a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell 1(5):493–503

    Article  CAS  Google Scholar 

  • Toufektchan E, Toledo F (2018) The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers 10(5):135

    Article  Google Scholar 

  • Vafa A, Afzal S, Barnwal P, Rashid S, Shahid A, Alpashree, Islam J, Sultana S (2020) Protective role of diosmin against testosterone propionate-induced prostatic hyperplasia in Wistar rats: plausible role of oxidative stress and inflammation. Hum Exp Toxicol 39(9):1133–1146

    Article  CAS  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    Article  CAS  Google Scholar 

  • Zhao Y, Hu X, Zuo X, Wang M (2018) Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct 9(9):4548–4568

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Islam, J. (2022). Protective Effect of Quercetin, Luteolin, and Fisetin via Stimulating the p53-Mediated Signaling in Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics