Skip to main content

Molecular Mechanism of Oxidative Stress in Cancer and Its Therapeutics

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cancer is one of the major causes of death worldwide, and persistent oxidative stress is considered as a proactive contributor to its pathogenesis. Oxidative stress is mainly identified by an increased level of reactive oxygen species (ROS) and reduced antioxidant defense system. Various exogenous and endogenous factors and altered metabolic processes produce different types of ROS that cause DNA damage, mutation, production of pro-carcinogens, and induced programmed cell death. These ROS alter various signaling pathways such as NF-kB, Nrf2, Akt/PI3K/mTOR, MAPK, p53, etc. which further regulate other downstream signaling molecules such as CREB, c-Myc, c-Jun, c-fos, etc., leading to initiation and progression of tumorigenesis. ROS also regulate the mechanism of angiogenesis and ensure the growth, survival, as well as invasion of tumor cells. Apart from cross talk between different signaling molecules, ROS and miRNAs work in close proximity and participate in tumorigenesis. Looking into the pro-carcinogenic role of ROS, many natural and synthetic antioxidants have been explored for their anticancer effect. These antioxidants not only abrogate the progression, proliferation, and invasion of tumors but also protect the healthy cells from the deleterious effect of anticancer drugs. However, another hypothesis justifies the anticancer effect of ROS and its need to increase the sensitivity of tumor cells toward the anticancer drug. Thus, it can be said that ROS act as a double-edged sword, and a fine line or boundary exists between the use of antioxidant drug and the need of ROS for management and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggarwal V et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9:735

    CAS  Google Scholar 

  • Ahmad A, Syed FA, Singh S, Hadi S (2005) Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. Toxicol Lett 159:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bost F, Kaminski L (2019) The metabolic modulator PGC-1α in cancer. Am J Cancer Res 9:198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boutwell RK, Sivak A (1973) The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol 2:419–444

    Article  Google Scholar 

  • Braglia L, Zavatti M, Vinceti M, Martelli AM, Marmiroli S (2020) Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: still a potential druggable target? Biochim Biophys Acta (BBA) Mol Cell Res:118731

    Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang A, Chen Q (2017) SirT3 and p53 deacetylation in aging and cancer. J Cell Physiol 232:2308–2311

    Article  CAS  PubMed  Google Scholar 

  • Chierto E, Cristinziano G, Sapone F, Meffre D, Jafarian-Tehrani M (2020) Effect of Etazolate on ROS production after tBHP-induced oxidative stress in oligodendroglial 158 N cell line. React Oxyg Species 9:22-35–22-35

    Google Scholar 

  • Chiu H-W, Chen Y-A, Ho S-Y, Wang Y-J (2012) Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and-independent human prostate cancer cells. PLoS One:7

    Google Scholar 

  • Daniel P et al (2017) PI3K activation in neural stem cells drives tumorigenesis which can be suppressed by targeting. CREB bioRxiv:143388

    Google Scholar 

  • Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446:475–482

    Article  CAS  PubMed  Google Scholar 

  • Dunn KL, Espino PS, Drobic B, He S, Davie JR (2005) The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83:1–14

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Zhou Q, Liu L-Z, Xia C, Hu X, Shi X, Jiang B-H (2007) Apigenin inhibits tumor angiogenesis through decreasing HIF-1α and VEGF expression. Carcinogenesis 28:858–864

    Article  CAS  PubMed  Google Scholar 

  • Feitelson MA et al (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. In: Seminars in cancer biology. Elsevier, pp S25–S54

    Google Scholar 

  • He J et al (2012) Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 13:1116–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong B, van den Heuvel PJ, Prabhu V, Zhang S, El-Deiry W (2014) Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets 15:80–89

    Article  CAS  PubMed  Google Scholar 

  • Hoxhaj G, Manning BD (2019) The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer:1–15

    Google Scholar 

  • Huang M, Xin W (2018) Matrine inhibiting pancreatic cells epithelial-mesenchymal transition and invasion through ROS/NF-κB/MMPs pathway. Life Sci 192:55–61

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA (2019) MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Asp Med 70:3–20

    Article  CAS  Google Scholar 

  • Iqubal A et al (2019a) Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision. Life Sci 218:112–131

    Article  CAS  PubMed  Google Scholar 

  • Iqubal A et al (2019b) Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. Eur J Pharmacol 863:172666

    Article  CAS  PubMed  Google Scholar 

  • Iqubal A, Sharma S, Najmi AK, Syed MA, Ali J, Alam MM, Haque SE (2019c) Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: plausible role of Nrf2 and NF-κB. Life Sci 236:116867

    Article  CAS  PubMed  Google Scholar 

  • Je JH, Lee JY, Jung KJ, Sung B, Go EK, Yu BP, Chung HY (2004) NF-κB activation mechanism of 4-hydroxyhexenal via NIK/IKK and p38 MAPK pathway. FEBS Lett 566:183–189

    Article  CAS  PubMed  Google Scholar 

  • Kashyap D, Tuli HS, Sak K, Garg VK, Goel N, Punia S, Chaudhary A (2019) Role of reactive oxygen species in cancer progression. Curr Pharmacol Rep 5:79–86

    Article  CAS  Google Scholar 

  • Khan G, Haque SE, Anwer T, Ahsan MN, Safhi MM, Alam M (2014) Cardioprotective effect of green tea extract on doxorubicin-induced cardiotoxicity in rats. Acta Pol Pharm 71:861–868

    PubMed  Google Scholar 

  • Khromova N, Kopnin P, Stepanova E, Agapova L, Kopnin B (2009) p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett 276:143–151

    Article  CAS  PubMed  Google Scholar 

  • Li A, Wang J, Wu M, Zhang X, Zhang H (2015) The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27Kip1 induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol 747:71–87

    Article  CAS  PubMed  Google Scholar 

  • Li R, Quan Y, Xia W (2018) SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/β-catenin pathway. Exp Cell Res 364:143–151

    Article  CAS  PubMed  Google Scholar 

  • Li T et al (2019) Ribociclib (LEE011) suppresses cell proliferation and induces apoptosis of MDA-MB-231 by inhibiting CDK4/6-cyclin D-Rb-E2F pathway. Artif Cells Nanomed Biotechnol 47:4001–4011

    Article  CAS  PubMed  Google Scholar 

  • Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2015) Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget 6:38983

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo K-W, Chen W, Lung W-Y, Wei X-Y, Cheng B-H, Cai Z-M, Huang W-R (2017) EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J Nutr Biochem 41:56–64

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Uchida T, Yoshie T, Mizote Y, Ishikawa F, Katsuyama M, Shibanuma M (2019) A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J 286:459–478

    Article  CAS  PubMed  Google Scholar 

  • Moro L (2019) Mitochondrial dysfunction in aging and cancer. J Clin Med 8:1983

    Article  CAS  PubMed Central  Google Scholar 

  • Nguyen TT, Ung TT, Li S, Lian S, Xia Y, Park SY, Do Jung Y (2019) Metformin inhibits lithocholic acid-induced interleukin 8 upregulation in colorectal cancer cells by suppressing ROS production and NF-kB activity. Sci Rep 9:1–13

    Google Scholar 

  • Paunkov A, Chartoumpekis DV, Ziros PG, Sykiotis GP (2019) A bibliometric review of the Keap1/Nrf2 pathway and its related antioxidant compounds. Antioxidants 8:353

    Article  CAS  PubMed Central  Google Scholar 

  • Pei X et al (2019) Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway. Chem Biol Interact 298:112–120

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Srivastava SK (2020) Oxidative stress and cancer: chemopreventive and therapeutic role of Triphala. Antioxidants 9:72

    Article  CAS  PubMed Central  Google Scholar 

  • Raj L et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid MA, Wang W-I, Rosales KR, Welliver MX, Pan M, Kong M (2013) The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell 50:200–211

    Article  CAS  PubMed  Google Scholar 

  • Shaw AT et al (2011) Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci 108:8773–8778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storz P (2013) Oxidative stress in cancer. In: Oxidative stress and redox regulation. Springer, pp 427–447

    Chapter  Google Scholar 

  • Tang Z et al (2016) CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway. Mol Oncol 10:317–329

    Article  CAS  PubMed  Google Scholar 

  • Teng J-F et al (2020) Polyphyllin VI induces Caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer. Cancers 12:193

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Q et al (2013) Nrf2 is associated with the regulation of basal transcription activity of the BRCA1 gene. Acta Biochim Biophys Sin 45:179–187

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2017) Cholesterol enhances colorectal cancer progression via ROS elevation and MAPK signaling pathway activation. Cell Physiol Biochem 42:729–742

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2018) Calcium and CaSR/IP3R in prostate cancer development. Cell Biosci 8:16

    Article  CAS  Google Scholar 

  • Yang W, Lu Z (2013) Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett 339:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K et al (2018) miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog 57:1566–1576

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang J, Yu C, Xiang L, Li L, Shi D, Lin F (2020) Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. Onco Targets Ther 13:513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Iqubal, A., Haque, S.E. (2022). Molecular Mechanism of Oxidative Stress in Cancer and Its Therapeutics. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics