Skip to main content

Some Aspects of Oxidative Stress–Induced Prostate Cancer Therapy

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Oxidative stresses that govern different cellular activities including activities of inflammatory processes play a critical role in the development of prostate cancer (PCa). PCa is predominantly a disease that afflicts elderly men since about 60% of prostate cancers are diagnosed in people who are over 65 years of age. [https://www.cancer.net/]

PCa has been categorized based on its cell of origin. In the prostatic ducts 95% of prostate cancers start off. While the remaining 5% include: small cell carcinoma, mucinous carcino acini, and other rare histopathologic types such as endometrioid cancer and squamous cell carcinoma. Notably, ROS level was found to link with the development of many types of PCa.

ROS-induced inflammatory cytokines augment a variety of redox signaling pathways to increase androgen receptor (AR) function. By contrast, Nrf2, a transcription factor, stimulates the expression of several antioxidant enzymes and inhibits the downstream effects of inflammatory transcription factors, for example, NF-κB, which has been substantiated by genome-wide search for Nrf2 target gene. Nrf2 overexpression has been observed to inhibit AR-induced increase in the transcription of CRPC cell lines. Additionally, two Nrf2 activating agents, sulforaphane (a phytochemical) and ardoxolone methyl, were shown to inhibit AR levels and excite castrate-resistant prostate cancer (CRPC) cells to antiandrogens. These inspections revealed the benefits of Nrf2 activators to inhibit the lethal signaling pathways, which bring about CRPC outgrowth.

Some ncRNAs control pre- and posttranscriptional gene functions and chromatin aggregation. They are implicated in carcinogenic processes such as augmenting tumor cell proliferation, promoting immortality, stimulating evasion of growth inhibitors, increasing angiogenesis, and thereby promoting invasion and metastasis. Targeting these ncRNAs could prove useful for therapy in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC (1999) Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 161:182–187

    CAS  PubMed  Google Scholar 

  • Almushatat AS, Talwar D, McArdle PA, Williamson C, Sattar N, O’Reilly DS, Underwood MA, McMillan DC (2006) Vitamin antioxidants, lipid peroxidation and the systemic inflammatory response in patients with prostate cancer. Int J Cancer 118:1051–1053

    CAS  PubMed  Google Scholar 

  • Augello MA, Den RB, Knudsen KE (2014) AR functions in promoting metastatic prostate cancer. Cancer Metastasis Rev 33:399–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awodele O, Adeyomoye AA, Awodele DF, Fayankinnu VB, Dolapo DC (2011) Cancer distribution pattern in South-Western Nigeria. Tanzan J Health Res 13:125–131

    PubMed  Google Scholar 

  • Aydin A, Arsova-Sarafinovska Z, Sayal A, Eken A, Erdem O, Erten K, Ozgok Y, Dimovski A (2006) Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin Biochem 39:176–179

    CAS  PubMed  Google Scholar 

  • Azoulay L, Eberg M, Benayoun S, Pollak M (2015) 5alpha-reductase inhibitors and the risk of cancer-related mortality in men with prostate cancer. JAMA Oncol 1:314–320

    PubMed  Google Scholar 

  • Bai XY, Qu X, Jiang X, Xu Z, Yang Y, Su Q, Wang M, Wu H (2015) Association between dietary vitamin c intake and risk of prostate cancer: a metaanalysis involving 103,658 subjects. J Cancer 6:913–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baltaci S, Orhan D, Gogus C, Turkolmez K, Tulunay O, Gogus O (2001) Inducible nitric oxide synthase expression in benign prostatic hyperplasia, low- and high-grade prostatic intraepithelial neoplasia and prostatic carcinoma. BJU Int 88:100–103

    CAS  PubMed  Google Scholar 

  • Battisti V, Maders LD, Bagatini MD, Reetz LG, Chiesa J, Battisti IE, Goncalves JF, Duarte MM, Schetinger MR, Morsch VM (2011) Oxidative stress and antioxidant status in prostate cancer patients: relation to Gleason score, treatment and bone metastasis. Biomed Pharmacother 65:516–524

    CAS  PubMed  Google Scholar 

  • Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta, Mol Cell Res 1865:721–733

    CAS  Google Scholar 

  • Bidoli E, Talamini R, Zucchetto A, Bosetti C, Negri E, Lenardon O, Maso LD, Polesel J, Montella M, Franceschi S et al (2009) Dietary vitamins E and C and prostate cancer risk. Acta Oncol 48:890–894

    CAS  PubMed  Google Scholar 

  • Blomma A, Ford CA, Mui E et al (2020) 2,4-dienoyl CoA reductase regulates lipid homeostasis in treatment resistant prostate cancer. Nat Commun 11:2508

    Google Scholar 

  • Bolton EM, Tuzova AV, Walsh AL, Lynch T, Perry AS (2014) Noncoding RNAs in prostate cancer: the long and the short of it. Clin Cancer Res 20:35–43

    CAS  PubMed  Google Scholar 

  • Bostanci Y, Kazzazi A, Momtahen S, Laze J, Djavan B (2013) Correlation between benign prostatic hyperplasia and inflammation. Curr Opin Urol 23:5–10

    PubMed  Google Scholar 

  • Bostwick DG, Qian J (2004) High-grade prostatic intraepithelial neoplasia. Mod Pathol 17:360–379

    PubMed  Google Scholar 

  • Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616

    CAS  PubMed  Google Scholar 

  • Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, Kuslich C, Visakorpi T, Hamdy FC (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106:768–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekar T, Yang JC, Gao AC, Evans CP (2015) Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 4:365–380

    PubMed  PubMed Central  Google Scholar 

  • Chang SN, Han J, Abdelkader TS, Kim TH, Lee JM, Song J, Kim KS, Park JH, Park JH (2014a) High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice. Prostate 74:1266–1277

    CAS  PubMed  Google Scholar 

  • Chang SN, Han J, Abdelkader TS, Kim TH, Lee JM, Song J, Kim KS, Park JH, Park JH (2014b) High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice. Prostate 74:1266–1277

    CAS  PubMed  Google Scholar 

  • Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, Yang J (2012) A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 72:1443–1452

    CAS  PubMed  Google Scholar 

  • Chinnapaka S et al (2019) 509 nitro-aspirin (NCX-4040) induces apoptosis in PC3 metastasis prostate cancer cells via hydrogen peroxide (H2O2)-mediated oxidative stress. Free Radic Biol Med 143:495

    Google Scholar 

  • Cookson MS, Reuter VE, Linkov I, Fair WR (1997a) Glutathione S-transferase PI (GSTpi) class expression by immunohistochemistry in benign and malignant prostate tissue. J Urol 157:673–676

    CAS  PubMed  Google Scholar 

  • Cookson MS, Reuter VE, Linkov I, Fair WR (1997b) Glutathione S-transferase PI (GSTpi) class expression by immunohistochemistry in benign and malignant prostate tissue. J Urol 157:673–676

    CAS  PubMed  Google Scholar 

  • Davey RA, Grossmann M (2016) Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev 37:3–15

    PubMed  PubMed Central  Google Scholar 

  • Denis LJ, Griffiths K (2000) Endocrine treatment in prostate cancer. Semin Surg Oncol 18(1):52–74

    CAS  PubMed  Google Scholar 

  • Didion SP (2017) Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int J Mol Sci 18:2563

    PubMed Central  Google Scholar 

  • Duru R, Njoku O, Maduka I (2014) Oxidative stress indicators in patients with prostate disorders in Enugu. South-East Nigeria Biomed Res Int 2014:313015

    PubMed  Google Scholar 

  • Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321

    CAS  PubMed  Google Scholar 

  • Eftekharzadeh B, Banduseela VC, Chiesa G et al (2019) Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun 10:3562

    PubMed  PubMed Central  Google Scholar 

  • Feng T, Zhao R, Sun F et al (2020) TXNDC9 regulates oxidative stress induced androgen receptor signaling to promote cancer progression. Oncogene 39:356–367

    CAS  PubMed  Google Scholar 

  • Fujita K, Nonomura N (2019) Role of androgen receptor in prostate cancer: a review. World J Mens Health 37:288–295

    PubMed  Google Scholar 

  • Gonzales JC, Fink LM, Goodman OB Jr, Symanowski JT, Vogelzang NJ, Ward DC (2011) Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer 9:39–45

    PubMed  Google Scholar 

  • Guo J, Wang M, Liu X (2015) MicroRNA-195 suppresses tumor cell proliferation and metastasis by directly targeting BCOX1 in prostate carcinoma. J Exp Clin Cancer Res 34:91

    PubMed  PubMed Central  Google Scholar 

  • Gupta-Elera G, Garrett AR, Robison RA, O’Neill KL (2012) The role of oxidative stress in prostate cancer. Eur J Cancer Prev 21:155–162

    CAS  PubMed  Google Scholar 

  • Hamilton MP, Rajapakshe KI, Bader DA, Cerne JZ, Smith EA, Coarfa C, Hartig SM, McGuire S (2016) The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP. Neoplasia 18:356–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hiu Yee Kwan HY, Liu HC, Fatima S et al (2019) Signal transducer and activator of transcription-3 drives the high-fat diet-associated prostate cancer growth. Cell Death Dis 10:637

    PubMed  PubMed Central  Google Scholar 

  • Iguchi T, Wang CY, Delongchamps NB, Kato M, Tamada S, Yamasaki T, de la Roza G, Nakatani T, Haas GP (2015) Association of MnSOD AA genotype with the progression of prostate cancer. PLoS One 10:e0131325

    PubMed  PubMed Central  Google Scholar 

  • Jackson WC, Schipper MJ et al (2016) l. Duration of androgen deprivation therapy influences outcomes for patients receiving radiation therapy following radical prostatectomy. Eur Urol 69:50–57

    PubMed  Google Scholar 

  • Jehonathan H, Pinthus YZ, Bryskiny I, Trachtenberg J et al (2007) Androgen induces adaptation of oxidative stress in prostate cancer: implication on treatment with radiation therapy. Neoplasia 9:68–80

    Google Scholar 

  • Jin Y, Wang L, Qu S, Sheng Y et al (2015a) STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO Mol Med 7:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin R, Yamashita H, Yu X et al (2015b) Inhibition of NF-kappa B signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression. Oncogene 34:3700–3710

    CAS  PubMed  Google Scholar 

  • Kanwal R, Pandey M, Bhaskaran N, Maclennan GT, Fu P, Ponsky LE, Gupta S (2014) Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol Carcinog 53:8–18

    CAS  PubMed  Google Scholar 

  • Khandrika L, Kumar B, Koul S, Maroni P, Koul HK (2009) Oxidative stress in prostate cancer. Cancer Lett 282:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khor TO, Huang MT, Prawan A et al (2008) Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila) 1:187–191

    CAS  Google Scholar 

  • Khurana N, Kim H, Chandra PK et al (2017) Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells: advocating a potent pharmaceutical combination against castration-resistant prostate cancer. Oncol Rep 38:2774–2786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotrikadze N, Alibegashvili M, Zibzibadze M, Abashidze N, Chigogidze T, Managadze L, Artsivadze K (2008) Activity and content of antioxidant enzymes in prostate tumors. Exp Oncol 30:244–247

    CAS  PubMed  Google Scholar 

  • Kumar V, Yadav CS, Datta SK, Singh S, Ahmed RS, Goel S, Gupta S, Mustafa M, Grover RK, Banerjee BD (2011) Association of GSTM1 and GSTT1 polymorphism with lipid peroxidation in benign prostate hyperplasia and prostate cancer: a pilot study. Dis Markers 30:163–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994a) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91:11733–11737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994b) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91:11733–11737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SO, Lou W, Hou M, de Miguel F, Gerber L, Gao AC (2003) Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res 209:370–376

    Google Scholar 

  • Lee B, Mazar J, Aftab MN et al (2014) Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn 16:615–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Khor TO, Xu C et al (2008a) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Khor TO, Xu C et al (2008b) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yang L, Lin C (2014) Long noncoding RNAs in prostate cancer: mechanisms and applications. Mol Cell Oncol 1(3):e963469

    PubMed  PubMed Central  Google Scholar 

  • Liu R, Liu C, Zhang D, Liu B, Chen X, Rycaj K, Jeter C, Calhoun-Davis T, Li Y, Yang T et al (2016) miR-199a-3p targets stemness-related and mitogenic signalling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget. https://doi.org/10.18632/oncotarget.10652

  • Liu J, Liu Y, Chen J et al (2017) The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol In Vitro 45:10–18

    PubMed  Google Scholar 

  • Lokody IB, Francis JC, Gardiner JR, Erler JT, Swain A (2015) Pten regulates epithelial cytodifferentiation during prostate development. PLoS One 10:e0129470

    PubMed  PubMed Central  Google Scholar 

  • Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J (2011) Circulating micro RNAs (miRNAS) in serum of patients with prostate cancer. Urology 77:1265.e9–1265.16

    Google Scholar 

  • Mandal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA (2021) Oxidative stress and redox signaling in CRPC progression: therapeutic potentials of clinically tested Nrf2 activators. Cancer Drug Resist 4:96–124

    Google Scholar 

  • Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK (2012) Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care 16:R66

    PubMed  PubMed Central  Google Scholar 

  • Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ (1999) Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 18(6):1313–1324

    CAS  PubMed  Google Scholar 

  • Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stoppler H, Simko J, Hilton JF, Carroll P, Blelloch R (2011) Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 71:550–560

    CAS  PubMed  Google Scholar 

  • Mouraviev V, Lee B, Patel V, Albala D, Johansen TE, Partin A, Ross A, Perera RJ (2016) Clinical prospects of long noncoding RNAs as novel biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis 19:14–20

    CAS  PubMed  Google Scholar 

  • Nassar ZD, Mah CY, Dhairs J et al (2020) DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. Elife 9:e54166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HC, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS, Kantoff PW (2013) Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 73(4):346–354

    CAS  PubMed  Google Scholar 

  • Nickel JC, Roehrborn CG, O’Leary MP, Bostwick DG (2008) Somerville MC, Rittmaster RS The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur Urol 54:1379–1384

    PubMed  Google Scholar 

  • Ntais C, Polycarpou A, Ioannidis JP (2005) Association of GSTM1, GSTT1, and GSTP1 gene polymorphisms with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 14:176–181

    CAS  PubMed  Google Scholar 

  • Nyquist MD, Dehm SM (2013) Interplay between genomic alterations and androgen receptor signaling during prostate cancer development and progression. Horm Cancer 4:61–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma M, Funato N, Higashihori N, Murakami M, Ohyama K, Nakamura M (2007) Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines. Biochem Biophys Res Commun 352:925–931. https://doi.org/10.1016/j.bbrc.2006.11.114

    Article  CAS  PubMed  Google Scholar 

  • Pinthus YZ, Bryskiny I, Trachtenberg J, Luz J-P et al (2007) Androgen induces adaptation of oxidative stress in prostate cancer: implications or treatment with radiation therapy. Neoplasia 9:68–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poniah P, Mohamed Z, Apalasamy YD, Mohd ZS, Kuppusamy S, Razack AH (2015) Genetic polymorphisms in the androgen metabolism pathway and risk of prostate cancer in low incidence Malaysian ethnic groups. Int J Clin Exp Med 8:19232–19240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prostate Cancer Molecular Biology. http://www.cancerindex.org/. Accessed 15 Apr 2016

  • Qin DJ, Tang CX, Yang L et al (2015) Hsp90 is a novel target molecule of CDDO-me in inhibiting proliferation of ovarian cancer cells. PLoS One 10:e0132337

    PubMed  PubMed Central  Google Scholar 

  • Reddy V, Iskander A, Hwang C et al (2019) Castration-resistant prostate cancer: androgen receptor inactivation induces telomere DNA damage, and damage response inhibition leads to cell death. PLoS One 14:e0211090

    PubMed  PubMed Central  Google Scholar 

  • Ronnau CG, Verhaegh GW, Luna-Velez MV, Schalken JA (2014) Noncoding RNAs as novel biomarkers in prostate cancer. Biomed Res Int 2014:591703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Chakraborti T, Chowdhury A, Chakraborti S (2013) Role of PKC-a in NF-iBMT1-MMP-mediated activation of proMMP-2 by TNF-a in pulmonary artery smooth muscle cells. Biochem 153:289–302

    CAS  Google Scholar 

  • Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Ogreid D, Ulvik A, Vu P, Haugen A (1997a) Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18:1285–1289

    CAS  PubMed  Google Scholar 

  • Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Ogreid D, Ulvik A, Vu P, Haugen A (1997b) Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18:1285–1289

    CAS  PubMed  Google Scholar 

  • Rycaj Y, Li H, Zhou J, Chang X, Tang DG (2017) Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol 44:83–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders I, Holdenrieder S, Walgenbach-Brunagel G, von Ruecker A, Kristiansen G, Muller SC, Ellinger J (2012) Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int J Urol 19:1017–1025

    CAS  PubMed  Google Scholar 

  • Sapre N, Selth LA (2013) Circulating microRNAs as biomarkers of prostate cancer: the state of play. Prostate Cancer 2013:539680

    PubMed  PubMed Central  Google Scholar 

  • Satoh H, Moriguchi T, Taguchi K et al (2010) Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31:1833–1843

    CAS  PubMed  Google Scholar 

  • Schmid-Alliana A, Schmid-Antomarchi H, Al-Sahlanee R, Lagadec P, Scimeca JC, Verron E (2018) Understanding the progression of bone metastases to identify novel therapeutic targets. Int J Mol Sci 19:148

    PubMed Central  Google Scholar 

  • Sciarra A, Mariotti G, Salciccia S, Autran GA, Monti S, Toscano V, Di SF (2008) Prostate growth and inflammation. J Steroid Biochem Mol Biol 108:254–260

    CAS  PubMed  Google Scholar 

  • Seashols-Williams SJ, Budd W, Clark GC, Wu Q, Daniel R, Dragoescu E, Zehner ZE (2016) miR-9 acts as an OncomiR in prostate cancer through multiple pathways that drive tumour progression and metastasis. PLoS One 11:e0159601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar E, Bhaskaran N, Maclennan GT, Liu G, Daneshgari F, Gupta S (2015) Inflammatory signaling involved in high-fat diet induced prostate diseases. J Urol Res 2:2018

    Google Scholar 

  • Sharma NL, Massie CE, Ramos-Montoya A et al (2013) The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23:35–47

    CAS  PubMed  Google Scholar 

  • Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, Santella RM (2012) Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 72:1469–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota M, Izumi H, Onitsuka T, Miyamoto N et al (2008) Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68:98–105

    CAS  PubMed  Google Scholar 

  • Shiota M, Yokimizo A, Naito S (2012) Pro-survival and anti-apoptotic properties of androgen receptor signaling by oxidative stress promote treatment resistance in prostate cancer. Endocr Relat Cancer 19:R243–R253

    CAS  PubMed  Google Scholar 

  • Shiota M, Yokomizo A, Naito S (2014) The development of therapeutics targeting oxidative stress in prostate cancer. Nihon Rinsho 72:2131–2135

    PubMed  Google Scholar 

  • Soni Y, Softness K, Arora H, Ramasamy R (2020) Am J Mens Health 14:1–8

    Google Scholar 

  • Sugar LM (2006) Inflammation and prostate cancer. Can J Urol 13(Suppl 1):46–47

    PubMed  Google Scholar 

  • Takahara K, Ii M, Inamoto T, Nakagawa T, Ibuki N, Yoshikawa Y, Tsujino T, Uchimoto T, Saito K, Takai T et al (2016) microRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate cancer. Stem Cells Dev 25:1290–1298

    CAS  PubMed  Google Scholar 

  • Tammela TL (2012) Endocrine prevention and treatment of prostate cancer. Mol Cell Endocrinol 360:59–67

    CAS  PubMed  Google Scholar 

  • Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6:a016295

    PubMed  PubMed Central  Google Scholar 

  • Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogene 3:e103

    CAS  Google Scholar 

  • Udensi KU, Tchounwou PB (2016) Oxidative stress in prostate hyperplasia and carcinogenesis. Cancer Res 35(139):1–19

    Google Scholar 

  • Uramoto H, Izumi H, Ise T, Tada M, Uchiumi T, Kuwano M, Yasumoto K, Funa K, Kohno K (2002) p73 interacts with c-Myc to regulate Y-box-binding protein-1 expression. J Biol Chem 277:31694–31702. https://doi.org/10.1074/jbc.M200266200

    Article  CAS  PubMed  Google Scholar 

  • Varenhorst E, Klaff R, Berglund A, Hedlund PO, Sandblom G (2014) Scandinavian Prostate Cancer Group (SPCG) trial no. 5. Predictors of early androgen deprivation treatment failure in prostate cancer with bone metastases. Cancer Med 5:407–414

    Google Scholar 

  • Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A (2017) Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18:2772

    PubMed Central  Google Scholar 

  • Wang Z, Shen H, Liang Z, Mao Y, Wang C, Xie L (2020) The characteristics of androgen receptor splice variant 7 in the treatment of hormonal sensitive prostate cancer: a systematic review and meta-analysis. Cancer Cell Int 20:149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth MP, Hakenberg OW, Froehner M (2007) Antiandrogens in the treatment of prostate cancer. Eur Urol 51:306–314

    CAS  PubMed  Google Scholar 

  • Xue D, Zhou C, Shi Y, Lu H, Xu R, He X (2016) Nuclear transcription factor Nrf2 suppresses prostate cancer cells growth and migration through upregulating ferroportin. Oncotarget 7:78804–78812

    PubMed  PubMed Central  Google Scholar 

  • Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, Gezer U (2011) Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol 32:583–588

    CAS  PubMed  Google Scholar 

  • Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34:111

    PubMed  PubMed Central  Google Scholar 

  • Yu M, Li H, Liu Q et al (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 23:883–892

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144

    CAS  PubMed  Google Scholar 

  • Zheng C, Yinghao S, Li J (2012) MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol 29:815–822

    CAS  PubMed  Google Scholar 

  • Ziaran S, Varchulova NZ, Bohmer D, Danisovic L (2015) Biomarkers for determination prostate cancer: implication for diagnosis and prognosis. Neoplasma 62:683–691

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alam, M.N., Chakraborti, T., Ghosh, P., Pramanik, P.K., Devgupta, P., Chakraborti, S. (2022). Some Aspects of Oxidative Stress–Induced Prostate Cancer Therapy. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics