Skip to main content

Enviro-Economic Analysis of Ginger Drying in Hybrid Active Greenhouse Solar Dryer

  • Conference paper
  • First Online:
Artificial Intelligence and Sustainable Computing

Abstract

The storage of high moisture crop for longer duration is not possible because of its faster degradation due to the presence of excess moisture. The drying of crops makes them suitable for storage without getting spoiled. The hybrid active greenhouse dryers are suitable for drying such high moisture products. In this greenhouse dryer, the hot water from evacuated tube solar collector is supplied to the heat exchanger kept in the drying chamber which also acts as the drying bed for the products to be dried. In our experimentation, ginger has been dried from 92.8% (wb) to 10% (wb) moisture content in 21 h. The maximum air temperature inside the greenhouse is 55.33 °C. The economic and environmental feasibility of the dryer is tested in the paper. The dryer is capable of producing 232 kg of dried ginger annually with payback time of 1.15 years only. In its entire lifetime, the dryer will mitigate 16.41 tonnes of CO2 that prove it as a sustainable solution for drying purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulmalek SH, Assadi MK, Al-Kayiem HH, Gitan AA (2018) A comparative analysis on the uniformity enhancement methods of solar thermal drying. Energy 148:1103–1115. https://doi.org/10.1016/j.energy.2018.01.060

    Article  Google Scholar 

  2. Boonyasri M, Lertsatitthanakorn C, Wiset L, Poomsa N (2011) Performance analysis and economic evaluation of a greenhouse dryer for pork drying. KKU Eng J 38:433–443

    Google Scholar 

  3. Gunerhan H, Hepbasli A, Giresunlu U (2009) Environmental impacts from the solar energy systems. Energy Sources, Part A Recover Util Environ Eff 31:1131–1138. https://doi.org/10.1080/15567030701512733

    Article  Google Scholar 

  4. Eltawil MA, Azam MM, Alghannam AO (2018) Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renew Energy 116:594–605. https://doi.org/10.1016/j.renene.2017.10.007

    Article  Google Scholar 

  5. Chauhan PS, Kumar A, Nuntadusit C (2018) Heat transfer analysis of PV integrated modified greenhouse dryer. Renew Energy 121:53–65. https://doi.org/10.1016/j.renene.2018.01.017

    Article  Google Scholar 

  6. Tripathy PP (2015) Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation. J Food Sci Technol 52:1383–1393. https://doi.org/10.1007/s13197-013-1170-0

    Article  Google Scholar 

  7. Arata A, Sharma V, Spagna G (1993) Performance evaluation of solar assisted dryers for low temperature drying application-II Experimental results. Energy Convers Manag 34:417–426

    Article  Google Scholar 

  8. Shaikh TB, Kolekar AB (2015) Review of Hybrid Solar Dryers. Int J Innov Eng Res Technol [IJIERT] 2:1–7

    Google Scholar 

  9. Mustapha MK, Salako AF, Ademola SK, Adefila IA (2014) Qualitative performance and economic analysis of low cost solar fish driers in Sub-Saharan Africa. J Fish 2:64. https://doi.org/10.17017/jfish.v2i1.2014.23

    Article  Google Scholar 

  10. Ndukwu MC, Simo-Tagne M, Abam FI, Onwuka OS, Prince S, Bennamoun L (2020) Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon 6: https://doi.org/10.1016/j.heliyon.2020.e03401

    Article  Google Scholar 

  11. ELkhadraoui A, Kooli S, Hamdi I, Farhat A (2015) Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew Energy 77:1–8. https://doi.org/10.1016/j.renene.2014.11.090

  12. Selvanayaki S, Sampathkumar K (2017) Techno-economic analysis of solar dryers. In: Prakash O, Kumar A (eds) Green energy technol. Springer, p. 463–93 (2017). https://doi.org/10.1007/978-981-10-3833-4_16

  13. Hamdani, Rizal TA, Muhammad Z (2018) Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Stud Therm Eng 12:489–96. https://doi.org/10.1016/j.csite.2018.06.008

  14. Dhanushkodi S, Wilson VH, Sudhakar K (2015) Life cycle cost of solar biomass hybrid dryer systems for cashew drying of nuts in India. Environ Clim Technol 15:22–33. https://doi.org/10.1515/rtuect-2015-0003

    Article  Google Scholar 

  15. Prakash O, Kumar A, Laguri V (2016) Performance of modified greenhouse dryer with thermal energy storage. Energy Reports 2:155–162. https://doi.org/10.1016/j.egyr.2016.06.003

    Article  Google Scholar 

  16. Kaewkiew J, Nabnean S, Janjai S (2012) Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Eng 32:433–439. https://doi.org/10.1016/j.proeng.2012.01.1290

    Article  Google Scholar 

  17. Eltawil MA, Azam MM, Alghannam AO (2018) Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). J Clean Prod 181:352–364. https://doi.org/10.1016/j.jclepro.2018.01.229

    Article  Google Scholar 

  18. Prakash O, Kumar A (2014) Environomical analysis and mathematical modelling for tomato flakes drying in a modified greenhouse dryer under active mode. Int J Food Eng 10:1–13. https://doi.org/10.1515/ijfe-2013-0063

    Article  Google Scholar 

  19. Kesavan S, Arjunan TV, Vijayan S (2019) Thermodynamic analysis of a triple-pass solar dryer for drying potato slices. J Therm Anal Calorim 136:159–171. https://doi.org/10.1007/s10973-018-7747-0

    Article  Google Scholar 

  20. Vijayan S, Arjunan TV, Kumar A (2020) Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renew Energy 146:2210–2223. https://doi.org/10.1016/j.renene.2019.08.066

    Article  Google Scholar 

  21. Tiwari S, Tiwari GN (2016) Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy 114:155–164. https://doi.org/10.1016/j.energy.2016.07.132

    Article  Google Scholar 

  22. Sreekumar A, Manikantan PE, Vijayakumar KP (2008) Performance of indirect solar cabinet dryer. Energy Convers Manag 49:1388–1395. https://doi.org/10.1016/j.enconman.2008.01.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P., Gaur, M.K. (2022). Enviro-Economic Analysis of Ginger Drying in Hybrid Active Greenhouse Solar Dryer. In: Dubey, H.M., Pandit, M., Srivastava, L., Panigrahi, B.K. (eds) Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-1220-6_11

Download citation

Publish with us

Policies and ethics