Skip to main content

Exogenous Gibberellic Acid Supplementation Renders Growth and Yield Protection Against Salinity Induced Oxidative Damage Through Upregulating Antioxidant Metabolism in Fenugreek (Trigonella foenum-graceum L.)

  • Chapter
  • First Online:
Fenugreek

Abstract

Gibberellic acid (GA) is a well-established group of phytohormones with growth eliciting properties. Considering the substantial damage by salt stress, we investigated whether foliar sprays of 10−6 M GA3 could reverse salinity implicated constraints in fenugreek plants and up to what extent. Our study suggested that exogenous GA3 could significantly (p ≤ 0.05) mitigate the effects of salinity in the fenugreek plants. This treatment maximised the growth and yield variables, as well. The activities of various assimilatory enzymes, such as carbonic anhydrase and nitrogen reductase, observed an increment of about 17% each over salt-stressed plants (50 mg L−1). Further metabolomic analyses revealed an upregulated antioxidant defence system with increased activities of superoxide dismutase (18%), catalase (13%), and ascorbate peroxidase (15%). The enhanced proline content (19%) in tandem with upregulated antioxidant enzymes minimised cellular damage through restricting TBARS and H2O2 contents by about 16% and 14%, respectively. Thus, in the light of sufficient data, we are convinced that foliar sprays of 10−6 M GA3 could be used for minimising the salinity induced growth and yield constraints in the fenugreek crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afroz, S., Mohammad, F., Hayat, S., & Siddiqui, M. H. (2006). Exogenous application of gibberellic acid counteracts the ill effect of sodium chloride in mustard. Turkish Journal of Biology, 29(4), 233-236.

    Google Scholar 

  • Ahmad, P. (2010). Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Archives of Agronomy and Soil Science, 56(5), 575-588.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399.

    Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.

    Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287.

    Google Scholar 

  • Belmecheri-Cherifi, H., Albacete, A., Martínez-Andújar, C., Pérez-Alfocea, F., & Abrous-Belbachir, O. (2019). The growth impairment of salinized fenugreek (Trigonella foenum-graecum L.) plants is associated to changes in the hormonal balance. Journal of Plant Physiology, 232, 311-319.

    Google Scholar 

  • Beyzi, E. (2020). Chemometric methods for fatty acid compositions of fenugreek (Trigonella foenum-graecum L.) and black cumin (Nigella sativa L.) seeds at different maturity stages. Industrial Crops and Products, 151, 112488.

    Google Scholar 

  • Bitarafan, Z., Asghari, H. R., Hasanloo, T., Gholami, A., Moradi, F., Khakimov, B., Liu, F., & Andreasen, C. (2019). The effect of charcoal on medicinal compounds of seeds of fenugreek (Trigonella foenum-graecum L.) exposed to drought stress. Industrial Crops and Products, 131, 323-329.

    Google Scholar 

  • Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83(3), 463-468.

    Google Scholar 

  • Chakraborty, K., Sairam, R. K., & Bhaduri, D. (2016). Effects of different levels of soil salinity on yield attributes, accumulation of nitrogen, and micronutrients in Brassica spp. Journal of Plant Nutrition, 39(7), 1026-1037.

    Google Scholar 

  • Chandlee, J. M., & Scandalios, J. G. (1984). Analysis of variants affecting the catalase developmental program in maize scutellum. Theoretical and Applied Genetics, 69(1), 71-77.

    Google Scholar 

  • Choudhary, S., Zehra, A., Mukarram, M., Wani, K. I., Naeem, M., Hakeem, K. R., & Aftab, T. (2021a). Potential uses of bioactive compounds of medicinal plants and their mode of action in several human diseases. In: Aftab T., Hakeem K.R. (eds) Medicinal and Aromatic Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_5

  • Choudhary, S., Zehra, A., Mukarram, M., Wani, K. I., Naeem, M., Khan, M. M. A., & Aftab, T. (2021b). Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. Chemosphere, 130153.

    Google Scholar 

  • Choudhary, S., Zehra, A., Mukarram, M., Naeem, M., Khan, M. M. A., Hakeem, K. R., & Aftab, T. (2021c). An insight into the role of plant growth regulators in stimulating abiotic stress tolerance in some medicinally important plants. In: Aftab T., Hakeem K.R. (eds) Plant Growth Regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_3

  • Corpas, F. J., Barroso, J. B., Palma, J. M., & Rodriguez-Ruiz, M. (2017). Plant peroxisomes: a nitro-oxidative cocktail. Redox Biology, 11, 535-542.

    Google Scholar 

  • Davière, J. M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140(6), 1147-1151.

    Google Scholar 

  • Dwivedi, R. S., & Randhawa, N. S. (1974). Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant and Soil, 40(2), 445-451.

    Google Scholar 

  • Eleiwa, M. E., Bafeel, S. O., & Ibrahim, S. A. (2011). Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions. I-Growth parameters and photosynthetic pigments. Australian Journal of Basic and Applied Sciences, 5(5), 58-65.

    Google Scholar 

  • Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142.

    Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.

    Google Scholar 

  • Hendawey, M. H. (2015). Biochemical changes associated with induction of salt tolerance in wheat. Global Science and Research Journal, 10, 84-99.

    Google Scholar 

  • Iqbal, N., Umar, S., Khan, N. A., & Khan, M. I. R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany, 100, 34-42.

    Google Scholar 

  • Javid, M. G., Sorooshzadeh, A., Moradi, F., Modarres Sanavy, S. A. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5(6), 726.

    Google Scholar 

  • Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43(6), 1274-1279.

    Google Scholar 

  • Khan, M. M. A., Gautam, C., Mohammad, F., Siddiqui, M. H., Naeem, M., & Khan, M. N. (2006). Effect of gibberellic acid spray on performance of tomato. Turkish Journal of Biology, 30(1), 11-16.

    Google Scholar 

  • Kuo, T. M., Warner, R. L., & Kleinhofs, A. (1982). In vitro stability of nitrate reductase from barley leaves. Phytochemistry, 21(3), 531-533.

    Google Scholar 

  • Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4-3.

    Google Scholar 

  • Maggio, A., Barbieri, G., Raimondi, G., De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29(1):63–72.

    Google Scholar 

  • Matysik, J., Alia, Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 525–532.

    Google Scholar 

  • Miceli, A., Moncada, A., Sabatino, L., & Vetrano, F. (2019b). Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy, 9(7), 382.

    Google Scholar 

  • Miceli, A., Vetrano, F., Sabatino, L., D’Anna, F., & Moncada, A. (2019a). Influence of preharvest gibberellic acid treatments on postharvest quality of minimally processed leaf lettuce and rocket. Horticulturae, 5(3), 63.

    Google Scholar 

  • Mickky, B. M., Abbas, M. A., & Sameh, N. M. (2019). Morpho-physiological status of fenugreek seedlings under NaCl stress. Journal of King Saud University-Science, 31(4), 1276-1282.

    Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410.

    Google Scholar 

  • Mukarram, M., Khan, M. M. A., & Corpas, F. J. (2021a). Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. Journal of Hazardous Materials, 412, 125254.

    Google Scholar 

  • Mukarram, M., Khan, M. M. A., Uddin, M., & Corpas, F. J. (2021b). Irradiated chitosan (ICH): An alternative tool to increase essential oil content in lemongrass (Cymbopogon flexuosus). Acta Physiologiae Plantarum (in press).

    Google Scholar 

  • Mukarram, M., Choudhary, S., Kurjak, D., Petek, A., & Khan, M. M. A. (2021c). Drought: Sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 172, 1291–1300.

    Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.

    Google Scholar 

  • Naeem, M., Sadiq, Y., Jahan, A., Nabi, A., Aftab, T., & Khan, M. M. A. (2020). Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotoxicology and Environmental Safety, 202, 110851.

    Google Scholar 

  • Nair, S., Gopalakrishnan, P., Umesh, S., Akshaya, S., Abhilasha, V. (2017). Evaluation of abiotic stress induced physiological and biochemical changes in Trigonella foenum-graecum. J. Biotechnol. Biochem. 3, 89–97.

    Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880.

    Google Scholar 

  • Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807-815.

    Google Scholar 

  • Okuda, T., Matsuda, Y., Yamanaka, A., & Sagisaka, S. (1991). Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiology, 97(3), 1265-1267.

    Google Scholar 

  • Ouzir, M., El Bairi, K., & Amzazi, S. (2016). Toxicological properties of fenugreek (Trigonella foenum graecum). Food and Chemical Toxicology, 96, 145-154.

    Google Scholar 

  • Ribeiro, D. M., Araújo, W. L., Fernie, A. R., Schippers, J. H., & Mueller-Roeber, B. (2012). Action of gibberellins on growth and metabolism of Arabidopsis plants associated with high concentration of carbon dioxide. Plant Physiology, 160(4), 1781-1794.

    Google Scholar 

  • Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669.

    Google Scholar 

  • Siddiqui, M. H., Khan, M. N., Mohammad, F., & Khan, M. M. A. (2008). Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. Journal of Agronomy and Crop Science, 194(3), 214-224.

    Google Scholar 

  • Singh, M., Singh, V. P., & Prasad, S. M. (2016). Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry, 109, 72-83.

    Google Scholar 

  • Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9.

    Google Scholar 

  • Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., & Matsuoka, M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol., 58, 183-198.

    Google Scholar 

  • Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71.

    Google Scholar 

  • Vetrano, F., Moncada, A., & Miceli, A. (2020). Use of Gibberellic Acid to Increase the Salt Tolerance of Leaf Lettuce and Rocket Grown in a Floating System. Agronomy, 10(4), 505.

    Google Scholar 

  • Wang, Y. H., Zhang, G., Chen, Y., Gao, J., Sun, Y. R., Sun, M. F., & Chen, J. P. (2019). Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiologiae Plantarum, 41(6), 93.

    Google Scholar 

  • Watson, D. J. (1958). The dependence of net assimilation rate on leaf-area index. Annals of Botany, 22(1), 37-54.

    Google Scholar 

  • Zehra, A., Choudhary, S., Mukarram, M., Naeem, M., Khan, M. M. A., & Aftab, T. (2020). Impact of long-term copper exposure on growth, photosynthesis, antioxidant defence system and artemisinin biosynthesis in soil-grown Artemisia annua genotypes. Bulletin of Environmental Contamination and Toxicology, 104(5), 609–618.

    Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71.

    Google Scholar 

Download references

Acknowledgements

MM acknowledges Mr. Abbu Zaid (AMU, Aligarh, India) for his sincere help with experimentations.

Author Contributions

FM: Conceptualization, Methodology, Validation, Resources, Supervision. MN: Methodology, Validation, Visualization, Supervision, Writing - Review & Editing. MMAK: Visualization, Writing - Review & Editing. MM: Investigation, Software, Formal analysis, Data curation, Writing -Original Draft.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukarram, M., Mohammad, F., Naeem, M., Khan, M.M.A. (2021). Exogenous Gibberellic Acid Supplementation Renders Growth and Yield Protection Against Salinity Induced Oxidative Damage Through Upregulating Antioxidant Metabolism in Fenugreek (Trigonella foenum-graceum L.). In: Naeem, M., Aftab, T., Khan, M.M.A. (eds) Fenugreek. Springer, Singapore. https://doi.org/10.1007/978-981-16-1197-1_6

Download citation

Publish with us

Policies and ethics