Skip to main content

Face Recognition Using Sf3CNN with Higher Feature Discrimination

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

With the advent of 2-dimensional Convolution Neural Networks (2D CNNs), the face recognition accuracy has reached above 99%. However, face recognition is still a challenge in real world conditions. A video, instead of an image, as an input can be more useful to solve the challenges of face recognition in real world conditions. This is because a video provides more features than an image. However, 2D CNNs cannot take advantage of the temporal features present in the video. We therefore, propose a framework called \(Sf_{3}CNN\) for face recognition in videos. The \(Sf_{3}CNN\) framework uses 3-dimensional Residual Network (3D Resnet) and A-Softmax loss for face recognition in videos. The use of 3D ResNet helps to capture both spatial and temporal features into one compact feature map. However, the 3D CNN features must be highly discriminative for efficient face recognition. The use of A-Softmax loss helps to extract highly discriminative features from the video for face recognition. \(Sf_{3}CNN\) framework gives an increased accuracy of 99.10% on CVBL video database in comparison to the previous 97% on the same database using 3D ResNets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  2. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. arXiv preprint arXiv:1703.05192 (2017)

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  5. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  6. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)

  7. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  8. Tewari, A., et al.: Mofa: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1274–1283 (2017)

    Google Scholar 

  9. Tran, L., Yin, X., Liu, X.: Disentangled representation learning gan for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1415–1424 (2017)

    Google Scholar 

  10. Vidyarthi, S.K., Tiwari, R., Singh, S.K.: Size and mass prediction of almond kernels using machine learning image processing. BioRxiv, p. 736348 (2020)

    Google Scholar 

  11. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, N.K., Singh, S.K. (2021). Face Recognition Using Sf3CNN with Higher Feature Discrimination. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1092-9_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1091-2

  • Online ISBN: 978-981-16-1092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics