Skip to main content

Dual Gradient Feature Pair Based Face Recognition for Aging and Pose Changes

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Abstract

This paper proposes a novel dual gradient feature pair (DGFP) based face recognition system that is robust against pose and age variation. This DGFP method, initially segments the rectangular face region into 6 regions which forms 3 pairs which is almost symmetrical to each other. From each pair highly matched HOG features are extracted and the dual gradient features like the positive gradients and negative gradients are extracted from the symmetrical regions of the face gets matched. DGFP is extracted in both the training and testing images. The matching is obtained using the minimum Euclidean distance with a threshold value. Experimental results are evaluated using the datasets such as MORPH, FGNET and Yale dataset and the results reveals that the proposed DGFP face recognition system has achieved an average recognition rate of 92.07%, average time of feature extraction is 253s and the average time of face recognition is 0.1533s

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, G.B., Ramesh, M., Berg, T.: Learned-miller E Labeled Faces in the Wild : A Database for Studying Face Recognition in Unconstrained Environments, pp. 1–11

    Google Scholar 

  2. Jadoon, W., Zhang, L., Zhang, Y.: Extended collaborative neighbor representation for robust single-sample face recognition. Neural Comput. Appl. 26(8), 1991–2000 (2015). https://doi.org/10.1007/s00521-015-1843-x

    Article  Google Scholar 

  3. Cheng, Q., Zhou, H., Cheng, J., Li, H.: A Minimax Framework for Classification with Applications to Images and High Dimensional Data. 36, 2117–2130 (2014)

    Google Scholar 

  4. Ding, Z., Suh, S., Han, J., et al.: Discriminative Low-Rank Metric Learning for Face Recognition, pp. 1–6 (2015)

    Google Scholar 

  5. Zhu, J., Zheng, W., Lu, F.: Illumination invariant single face image recognition under Heterogeneous Lighting Condition. Pattern Recogn. (2016). https://doi.org/10.1016/j.patcog.2016.12.029

    Article  Google Scholar 

  6. Ding, C., Member, S., Choi, J., Member, S.: Multi-Directional Multi-Level Dual-Cross. 8828, 1–5 (2015). https://doi.org/10.1109/TPAMI.2015.2462338

    Article  Google Scholar 

  7. Riggan, B.S., Reale, C., Member, S.: Coupled Auto-Associative Neural Networks for Heterogeneous Face Recognition. 3 (2015)

    Google Scholar 

  8. Ding, Y., Qin, Z., Li, B., Yuan, X.: Facial Expression Recognition From Image Sequence Based on LBP and Taylor Expansion (2017)

    Google Scholar 

  9. Yang, J., Luo, L., Qian, J., et al.: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 39, 156–171 (2017). https://doi.org/10.1109/TPAMI.2016.2535218

    Article  Google Scholar 

  10. Il, C.S., Choi, C.H., Kwak, N.: Face recognition based on 2D images under illumination and pose variations. Pattern Recogn. Lett. 32, 561–571 (2011). https://doi.org/10.1016/j.patrec.2010.11.021

    Article  Google Scholar 

  11. Turk M, Pentland A E i g e d c e s for Recognition. 3

    Google Scholar 

  12. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997). https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  13. Wechsler, H.: Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. 11, 467–476 (2002)

    Google Scholar 

  14. Zou J, Ji Q, Member S, Nagy G A Comparative Study of Local Matching Approach for Face Recognition. 1–29

    Google Scholar 

  15. Liao, S., Yi, D., Lei, Z., et al.: Heterogeneous Face Recognition from Local Structures of Normalized Appearance, pp. 209–218 (2009)

    Google Scholar 

  16. Chai, Z., Mendez-vazquez, H., He, R., Sun, Z.: Semantic Pixel Sets Based Local Binary Patterns for Face Recognition, pp. 639–651 (2013)

    Google Scholar 

  17. Jabid, T., Kabir, H., Chae, O.: Robust Facial Expression Recognition Based on Local Directional Pattern. 32, 784–794 (2010). https://doi.org/10.4218/etrij.10.1510.0132

    Article  Google Scholar 

  18. Chakraborty, S., Member, S., Singh, S.K., Member, S.: Local gradient hexa pattern: a descriptor for face recognition and retrieval. (2016). https://doi.org/10.1109/TCSVT.2016.2603535

    Article  Google Scholar 

  19. Jing, X., Wu, F., Zhu, X., et al.: Multi-spectral low-rank structured dictionary learning for face recognition. Pattern Recogn. (2016). https://doi.org/10.1016/j.patcog.2016.01.023

    Article  Google Scholar 

  20. Ou, W., Luan, X., Gou, J., et al.: PT US CR. Pattern Recogn. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.07.006

    Article  Google Scholar 

  21. Nagpal, S., Singh, M., Singh, R., Member S Regularized Deep Learning for Face Recognition With Weight Variations 3 (2016)

    Google Scholar 

  22. Yin, X., Member XL Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition, pp. 1–12

    Google Scholar 

  23. Moeini, A., Moeini, H.: Real-World and Rapid Face Recognition towards Pose and Expression Variations via Feature Library Matrix. 6013 (2015). https://doi.org/https://doi.org/10.1109/TIFS.2015.2393553

  24. Lu, J., Liong, V.E., Zhou, X., Zhou, J.: Learning compact binary face descriptor for face recognition. 8828, 1–6 (2015). https://doi.org/10.1109/TPAMI.2015.2408359

    Article  Google Scholar 

  25. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. (2001). https://doi.org/10.1109/CVPR.2001.990517

    Article  Google Scholar 

  26. Ricanek Jr., K., Tesafaye, T.: MORPH: A longitudinal image Age-progression, of normal adult. In: Proceedings of the 7th Int Conf Autom Face Gesture Recognit 0–4 (2006)

    Google Scholar 

  27. Face and Gestrure Recognition Research Network(FGNET) Database: https://yanwifu.github.io/FG_NET_data/FGNET.zip

  28. Yale Faces Database. https://vision.ucsd.edu/content/yale-face-database

  29. Kamarajugadda, K.K., Polipalli, T.R.: Extract features from periocular region to identify the age using machine learning algorithms. J. Med. Syst. 43(7), 1–5 (2019). https://doi.org/10.1007/s10916-019-1335-0

    Article  Google Scholar 

  30. Wang, L., Cheng, H., Liu, Z.: A set-to-set nearest neighbor approach for robust and efficient face recognition with image sets ☆, ☆☆. J. Vis. Commun. Image Represent. 53, 13–19 (2018). https://doi.org/10.1016/j.jvcir.2018.02.004

    Article  Google Scholar 

  31. Zhu, W., Yan, Y., Peng, Y.: Pair of projections based on sparse consistence with applications to efficient face recognition. Signal Process. Image Commun. 55, 32–40 (2017). https://doi.org/10.1016/j.image.2017.03.012

    Article  Google Scholar 

  32. Khan, S.A., Ishtiaq, M., Nazir, M., Shaheen, M.: Face recognition under varying expressions and illumination using particle swarm optimization. J. Comput. Sci. 28, 94–100 (2018). https://doi.org/10.1016/j.jocs.2018.08.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shoba, V.B.T., Sam, I.S. (2021). Dual Gradient Feature Pair Based Face Recognition for Aging and Pose Changes. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1092-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1091-2

  • Online ISBN: 978-981-16-1092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics