Skip to main content

Carbon Nanotube Alignment Techniques and Their Sensing Applications

  • Chapter
  • First Online:
Carbon Nanomaterial Electronics: Devices and Applications

Abstract

Recent progress on the synthesis and scalable manufacturing of carbon nanotubes (CNTs) remain critical to exploit various commercial applications. Here we review breakthroughs in the alignment of CNTs, and highlight related major ongoing research domain along with their challenges. Some promising applications capitalizing the synthesis techniques along with the characteristics of CNTs are also explained in context to the recent developments of CNT alignment. The prime objective of this chapter is to provide an up-to-date scientific framework of this niche emerging research area as well as on the growth of CNTs either by in-situ or ex-situ synthesis techniques followed by its alignment during growth or post-growth processing. This chapter deals with various mechanism of CNTs alignment, its process parameters, and the critical challenges associated with the individual technique. Numerous novel applications utilizing the characteristics of aligned CNTs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao R, Pint CL, Islam AE et al (2018) Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12:11756–11784. https://doi.org/10.1021/acsnano.8b06511

    Article  Google Scholar 

  2. Mudimela PR, Scardamaglia M, González-León O et al (2014) Gas sensing with gold-decorated vertically aligned carbon nanotubes. Beilstein J Nanotechnol 5:910–918. https://doi.org/10.3762/bjnano.5.104

    Article  Google Scholar 

  3. Dai L, Patil A, Gong X et al (2003) Aligned nanotubes. ChemPhysChem 4:1150–1169. https://doi.org/10.1002/cphc.200300770

    Article  Google Scholar 

  4. Fam DWHWH, Palaniappan A, Tok AIYIY et al (2011) A review on technological aspects influencing commercialization of carbon nanotube sensors. Sens Actuat, B Chem 157:1–7. https://doi.org/10.1016/j.snb.2011.03.040

    Article  Google Scholar 

  5. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:1–18. https://doi.org/10.1155/2013/676815

    Article  Google Scholar 

  6. Cao Q, Rogers JA (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res 1:259–272. https://doi.org/10.1007/s12274-008-8033-4

    Article  Google Scholar 

  7. Ishikawa FN, Chang H, Ryu K et al (2009) Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 3:73–79. https://doi.org/10.1021/nn800434d

    Article  Google Scholar 

  8. Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23:055703. https://doi.org/10.1088/0957-4484/23/5/055703

  9. Thostenson ET, Chou T-W (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35:L77–L80. https://doi.org/10.1088/0022-3727/35/16/103

    Article  Google Scholar 

  10. Goh GL, Agarwala S, Yeong WY (2019) Directed and on-demand alignment of carbon nanotube: a review toward 3D printing of electronics. Adv Mater Interf 6:1801318. https://doi.org/10.1002/admi.201801318

    Article  Google Scholar 

  11. Wang Y, Maspoch D, Zou S et al (2006) Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc Natl Acad Sci 103:2026–2031. https://doi.org/10.1073/pnas.0511022103

    Article  Google Scholar 

  12. Duchamp M, Lee K, Dwir B et al (2010) Controlled positioning of carbon nanotubes by dielectrophoresis: insights into the solvent and substrate role. ACS Nano 4:279–284. https://doi.org/10.1021/nn901559q

    Article  Google Scholar 

  13. Huang Y (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633. https://doi.org/10.1126/science.291.5504.630

    Article  Google Scholar 

  14. Fukuda T, Arai F, Dong L (2003) Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE 9:1803–1818. https://doi.org/10.1109/JPROC.2003.818334

    Article  Google Scholar 

  15. Ko H, Peleshanko S, Tsukruk VV (2004) Combing and bending of carbon nanotube arrays with confined microfluidic flow on patterned surfaces. J Phys Chem B 108:4385–4393. https://doi.org/10.1021/jp031229e

    Article  Google Scholar 

  16. Lan Y, Wang Y, Ren ZF (2011) Physics and applications of aligned carbon nanotubes. Adv Phys 60:553–678. https://doi.org/10.1080/00018732.2011.599963

    Article  Google Scholar 

  17. Oh BS, Min Y-S, Bae EJ et al (2006) Fabrication of suspended single-walled carbon nanotubes via a direct lithographic route. J Mater Chem 16:174–178. https://doi.org/10.1039/B510742C

    Article  Google Scholar 

  18. Baughman RH (2002) Carbon nanotubes—the route toward applications. Science (80–) 297:787–792. https://doi.org/10.1126/science.1060928

  19. Dresselhaus MS (1997) Future directions in carbon science. Ann Rev Mater Sci 27:1–34. https://doi.org/10.1146/annurev.matsci.27.1.1

    Article  Google Scholar 

  20. Ren Z, Lan Y, Wang Y (2013) Aligned carbon nanotubes. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  21. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241. https://doi.org/10.1016/S0039-6028(01)01558-8

    Article  Google Scholar 

  22. Hiramatsu M, Deguchi T, Nagao H, Hori M (2007) Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation. Jpn J Appl Phys 46:L303–L306. https://doi.org/10.1143/JJAP.46.L303

    Article  Google Scholar 

  23. Li WZ, Xie SS, Qian LX et al (1996) Large-scale synthesis of aligned carbon nanotubes. Science (80–)274:1701–1703. https://doi.org/10.1126/science.274.5293.1701

  24. Terrones M, Grobert N, Olivares J et al (1997) Controlled production of aligned-nanotube bundles. Nature 388:52–55. https://doi.org/10.1038/40369

    Article  Google Scholar 

  25. Ren ZF (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science (80–) 282:1105–1107. https://doi.org/10.1126/science.282.5391.1105

  26. Pan ZW, Xie SS, Chang BH et al (1998) Very long carbon nanotubes. Nature 394:631–632. https://doi.org/10.1038/29206

    Article  Google Scholar 

  27. Fan S (1999) self-oriented regular arrays of carbon nanotubes and their field emission properties. Science (80–) 283:512–514. https://doi.org/10.1126/science.283.5401.512

  28. Choi YC, Shin YM, Lee YH et al (2000) Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 76:2367–2369. https://doi.org/10.1063/1.126348

    Article  Google Scholar 

  29. Bower C, Zhu W, Jin S, Zhou O (2000) Plasma-induced alignment of carbon nanotubes. Appl Phys Lett 77:830–832. https://doi.org/10.1063/1.1306658

    Article  Google Scholar 

  30. Bower C, Zhou O, Zhu W et al (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769. https://doi.org/10.1063/1.1319529

    Article  Google Scholar 

  31. Jiran E, Thompson CV (1990) Capillary instabilities in thin films. J Electron Mater 19:1153–1160. https://doi.org/10.1007/BF02673327

    Article  Google Scholar 

  32. Jiran E, Thompson CV (1992) Capillary instabilities in thin, continuous films. Thin Solid Films 208:23–28. https://doi.org/10.1016/0040-6090(92)90941-4

    Article  Google Scholar 

  33. Zhang G, Mann D, Zhang L et al (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hhidden roles of hydrogen and oxygen. Proc Natl Acad Sci 102:16141–16145. https://doi.org/10.1073/pnas.0507064102

    Article  Google Scholar 

  34. Hata K (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science (80–) 306:1362–1364. https://doi.org/10.1126/science.1104962

  35. Kong J, Soh HT, Cassell AM et al (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395:878–881. https://doi.org/10.1038/27632

    Article  Google Scholar 

  36. Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382:361–366. https://doi.org/10.1016/j.cplett.2003.10.076

    Article  Google Scholar 

  37. Andrews R, Jacques D, Rao AM et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474. https://doi.org/10.1016/S0009-2614(99)00282-1

    Article  Google Scholar 

  38. Kang SJ, Kocabas C, Ozel T et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236. https://doi.org/10.1038/nnano.2007.77

    Article  Google Scholar 

  39. Zhang Y, Chang A, Cao J et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79:3155–3157. https://doi.org/10.1063/1.1415412

    Article  Google Scholar 

  40. Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes advanced topics in the synthesis, structure. Properties and applications. Springer, , Berlin, Heidelberg

    MATH  Google Scholar 

  41. Han S, Liu X, Zhou C (2005) Template-free directional growth of single-walled carbon nanotubes on a- and r-Plane Sapphire. J Am Chem Soc 127:5294–5295. https://doi.org/10.1021/ja042544x

    Article  Google Scholar 

  42. Ago H, Nakamura K, Ikeda K et al (2005) Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem Phys Lett 408:433–438. https://doi.org/10.1016/j.cplett.2005.04.054

    Article  Google Scholar 

  43. Rutkowska A, Walker D, Gorfman S et al (2009) Horizontal alignment of chemical vapor-deposited swnts on single-crystal quartz surfaces: further evidence for epitaxial alignment. J Phys Chem C 113:17087–17096. https://doi.org/10.1021/jp9048555

    Article  Google Scholar 

  44. Ismach A, Segev L, Wachtel E, Joselevich E (2004) Atomic-step-templated formation of single wall carbon nanotube patterns. Angew Chemie Int Ed 43:6140–6143. https://doi.org/10.1002/anie.200460356

    Article  Google Scholar 

  45. Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127:11554–11555. https://doi.org/10.1021/ja052759m

    Article  Google Scholar 

  46. Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663. https://doi.org/10.1063/1.1630167

    Article  Google Scholar 

  47. Meyyappan M (2009) A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D Appl Phys 42:213001. https://doi.org/10.1088/0022-3727/42/21/213001

  48. Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12:205–216. https://doi.org/10.1088/0963-0252/12/2/312

    Article  Google Scholar 

  49. Merkulov VI, Melechko AV, Guillorn MA et al (2002) Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chem Phys Lett 361:492–498. https://doi.org/10.1016/S0009-2614(02)01016-3

    Article  Google Scholar 

  50. Teo KBK, Chhowalla M, Amaratunga GAJ et al (2001) Uniform patterned growth of carbon nanotubes without surface carbon. Appl Phys Lett 79:1534–1536. https://doi.org/10.1063/1.1400085

    Article  Google Scholar 

  51. Teo KBK, Hash DB, Lacerda RG et al (2004) The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett 4:921–926. https://doi.org/10.1021/nl049629g

    Article  Google Scholar 

  52. Cruden BA, Cassell AM, Ye Q, Meyyappan M (2003) Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J Appl Phys 94:4070–4078. https://doi.org/10.1063/1.1601293

    Article  Google Scholar 

  53. Han J, Yang W-S, Yoo J-B, Park C-Y (2000) Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition. J Appl Phys 88:7363–7365. https://doi.org/10.1063/1.1322378

    Article  Google Scholar 

  54. Wang Y, Rybczynski J, Wang DZ et al (2004) Periodicity and alignment of large-scale carbon nanotubes arrays. Appl Phys Lett 85:4741–4743. https://doi.org/10.1063/1.1819992

    Article  Google Scholar 

  55. Tu Y, Lin Y, Ren ZF (2003) Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett 3:107–109. https://doi.org/10.1021/nl025879q

    Article  Google Scholar 

  56. Wang Y (2006) Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Boston College, Chestnut Hill

    Google Scholar 

  57. Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied Aspects. Adv Mater 21:29–53. https://doi.org/10.1002/adma.200801995

    Article  Google Scholar 

  58. Smith PA, Nordquist CD, Jackson TN et al (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401. https://doi.org/10.1063/1.1290272

    Article  Google Scholar 

  59. Cole M, Milne W (2013) Plasma enhanced chemical vapour deposition of horizontally aligned carbon nanotubes. Materials (Basel) 6:2262–2273. https://doi.org/10.3390/ma6062262

    Article  Google Scholar 

  60. Cole M, Hiralal P, Ying K et al (2012) Dry-transfer of aligned multiwalled carbon nanotubes for flexible transparent thin films. J Nanomater 2012:1–8. https://doi.org/10.1155/2012/272960

    Article  Google Scholar 

  61. de Jonge N, Allioux M, Doytcheva M et al (2004) Characterization of the field emission properties of individual thin carbon nanotubes. Appl Phys Lett 85:1607–1609. https://doi.org/10.1063/1.1786634

    Article  Google Scholar 

  62. Teo KBK, Lee S-B, Chhowalla M et al (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres how uniform do they grow? Nanotechnology 14:204–211. https://doi.org/10.1088/0957-4484/14/2/321

    Article  Google Scholar 

  63. Chhowalla M, Teo KBK, Ducati C et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317. https://doi.org/10.1063/1.1410322

    Article  Google Scholar 

  64. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, Hoboken, NJ, USA

    Book  Google Scholar 

  65. Bell MS, Teo KBK, Lacerda RG et al (2006) Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl Chem 78:1117–1125. https://doi.org/10.1351/pac200678061117

    Article  Google Scholar 

  66. Xue W, Li P (2011) Dielectrophoretic deposition and alignment of carbon nanotubes. In: Carbon nanotubes—synthesis, characterization, applications. InTech, pp 171–190

    Google Scholar 

  67. Banerjee S, White BE, Huang L et al (2006) Precise positioning of single-walled carbon nanotubes by AC dielectrophoresis. J Vac Sci Technol B Microelectron Nanom Struct 24:3173. https://doi.org/10.1116/1.2387155

    Article  Google Scholar 

  68. Stokes P, Khondaker SI (2008) Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis. Nanotechnology 19:175202. https://doi.org/10.1088/0957-4484/19/17/175202

  69. Arun A, Salet P, Ionescu AM (2009) A study of deterministic positioning of carbon nanotubes by dielectrophoresis. J Electron Mater 38:742–749. https://doi.org/10.1007/s11664-009-0797-0

    Article  Google Scholar 

  70. Xiao Z, Camino FE (2009) The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials. Nanotechnology 20:135205. https://doi.org/10.1088/0957-4484/20/13/135205

  71. Heremans J, Olk CH, Morelli DT (1994) Magnetic susceptibility of carbon structures. Phys Rev B 49:15122–15125. https://doi.org/10.1103/PhysRevB.49.15122

    Article  Google Scholar 

  72. Wu B, Zhang J, Wei Z et al (2001) Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. J Phys Chem B 105:5075–5078. https://doi.org/10.1021/jp0101256

    Article  Google Scholar 

  73. Rao SG, Huang L, Setyawan W, Hong S (2003) Large-scale assembly of carbon nanotubes. Nature 425:36–37. https://doi.org/10.1038/425036a

    Article  Google Scholar 

  74. Im J, Huang L, Kang J et al (2006) “Sliding kinetics” of single-walled carbon nanotubes on self-assembled monolayer patterns: beyond random adsorption. J Chem Phys 124:224707. https://doi.org/10.1063/1.2206590

  75. Lee M, Lee J, Kim TH, et al (2010) 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors. Nanotechnology 21:055504. https://doi.org/10.1088/0957-4484/21/5/055504

  76. Li X, Zhang L, Wang X et al (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129:4890–4891. https://doi.org/10.1021/ja071114e

    Article  Google Scholar 

  77. Yu X, Munge B, Patel V et al (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205. https://doi.org/10.1021/ja062117e

    Article  Google Scholar 

  78. Jia L, Zhang Y, Li J et al (2008) Aligned single-walled carbon nanotubes by Langmuir-Blodgett technique. J Appl Phys 104:074318. https://doi.org/10.1063/1.2996033

    Article  Google Scholar 

  79. Gao Y, Deng Y, Liao Z, Zhang M (2017) Aligned carbon nanotube field effect transistors by repeated compression-expansion cycles in Langmuir-Blodgett. In: 2017 IEEE 17th international conference on nanotechnology (IEEE-NANO). IEEE, pp 731–734

    Google Scholar 

  80. Giancane G, Ruland A, Sgobba V et al (2010) Aligning single-walled carbon nanotubes by means of langmuir-blodgett film deposition: optical, morphological, and photo-electrochemical studies. Adv Funct Mater 20:2481–2488. https://doi.org/10.1002/adfm.201000290

    Article  Google Scholar 

  81. Ma Y, Wang B, Wu Y et al (2011) The production of horizontally aligned single-walled carbon nanotubes. Carbon 49:4098–4110. https://doi.org/10.1016/j.carbon.2011.06.068

    Article  Google Scholar 

  82. Sadovoy A, Dubovik Y, Nazvanov V (2007) Carbon nanotubes aligning by Langmuir-Blodgett technique and visualizing by nematic liquid crystals. In: Zimnyakov DA, Khlebtsov NG (eds) Saratov pp 653609–653609–5. https://doi.org/10.1117/12.753440

  83. Kim K, Kim MJ, Kim DW et al (2020) Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-019-13901-z

    Article  Google Scholar 

  84. Sgobba V, Giancane G, Cannoletta D et al (2014) Langmuir-Schaefer films for aligned carbon nanotubes functionalized with a conjugate polymer and photoelectrochemical response enhancement. ACS Appl Mater Interfaces 6:153–158. https://doi.org/10.1021/am403656k

    Article  Google Scholar 

  85. Lee D, Ye Z, Campbell SA, Cui T (2012) Suspended and highly aligned carbon nanotube thin-film structures using open microfluidic channel template. Sensors Actuat A Phys 188:434–441. https://doi.org/10.1016/j.sna.2012.06.013

    Article  Google Scholar 

  86. Ye Z, Lee D, Campbell SA, Cui T (2011) Thermally enhanced single-walled carbon nanotube microfluidic alignment. Microelectron Eng 88:2919–2923. https://doi.org/10.1016/j.mee.2011.03.158

    Article  Google Scholar 

  87. LeMieux MC, Roberts M, Barman S et al (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science (80–) 321:101–104. https://doi.org/10.1126/science.1156588

  88. Hu Y, Chen Y, Li P, Zhang J (2013) Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. Small 9:1306–1311. https://doi.org/10.1002/smll.201202940

    Article  Google Scholar 

  89. Agarwal PB, Pawar S, Reddy SM et al (2016) Reusable silicon shadow mask with sub-5 μm gap for low cost patterning. Sens Actuat A Phys 242:67–72. https://doi.org/10.1016/j.sna.2016.02.040

    Article  Google Scholar 

  90. Agarwal PB, Sharma R, Mishra D et al (2020) Silicon shadow mask technology for aligning and in situ sorting of semiconducting SWNTs for sensitivity enhancement: a case study of NO2 gas sensor. ACS Appl Mater Interf 12:40901–40909. https://doi.org/10.1021/acsami.0c10189

    Article  Google Scholar 

  91. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  92. de Heer WA, Ch telain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science (80–) 270:1179–1180. https://doi.org/10.1126/science.270.5239.1179

  93. Hu Y, Chiang S-W, Chu X et al (2020) Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials. J Mater Sci. https://doi.org/10.1007/s10853-020-04681-9

    Article  Google Scholar 

  94. de Jonge N, Lamy Y, Schoots K, Oosterkamp TH (2002) High brightness electron beam from a multi-walled carbon nanotube. Nature 420:393–395. https://doi.org/10.1038/nature01233

    Article  Google Scholar 

  95. Modi A, Koratkar N, Lass E et al (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174. https://doi.org/10.1038/nature01777

    Article  Google Scholar 

  96. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Reports 43:61–102. https://doi.org/10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  97. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657. https://doi.org/10.1021/cm102406h

    Article  Google Scholar 

  98. Dai H, Hafner JH, Rinzler AG et al (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150. https://doi.org/10.1038/384147a0

    Article  Google Scholar 

  99. Kong J (2000) Nanotube molecular wires as chemical sensors. Science (80–) 287:622–625. https://doi.org/10.1126/science.287.5453.622

  100. Yao Z, Postma HWC, Balents L, Dekker C (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276. https://doi.org/10.1038/46241

    Article  Google Scholar 

  101. Wei J, Zhu H, Wu D, Wei B (2004) Carbon nanotube filaments in household light bulbs. Appl Phys Lett 84:4869–4871. https://doi.org/10.1063/1.1762697

    Article  Google Scholar 

  102. Wang QH, Setlur AA, Lauerhaas JM et al (1998) A nanotube-based field-emission flat panel display. Appl Phys Lett 72:2912–2913. https://doi.org/10.1063/1.121493

    Article  Google Scholar 

  103. Nakayama Y, Akita S (2001) Field-emission device with carbon nanotubes for a flat panel display. Synth Met 117:207–210. https://doi.org/10.1016/S0379-6779(00)00365-9

    Article  Google Scholar 

  104. Thapa A, Jungjohann KL, Wang X, Li W (2020) Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification. J Mater Sci 55:2101–2117. https://doi.org/10.1007/s10853-019-04156-6

    Article  Google Scholar 

  105. Milne WI, Teo KBK, Amaratunga GAJ et al (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933. https://doi.org/10.1039/b314155c

    Article  Google Scholar 

  106. Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc London Ser A, Contain Pap a Math Phys Character 119:173–181. https://doi.org/10.1098/rspa.1928.0091

  107. Mayer A, Vigneron J-P (1998) Quantum-mechanical theory of field electron emission under axially symmetric forces. J Phys Condens Matter 10:869–881. https://doi.org/10.1088/0953-8984/10/4/015

    Article  Google Scholar 

  108. Jensen KL (2003) Electron emission theory and its application: Fowler-Nordheim equation and beyond. J Vac Sci Technol B Microelectron Nanom Struct 21:1528. https://doi.org/10.1116/1.1573664

    Article  Google Scholar 

  109. Parveen S, Kumar A, Husain S, Husain M (2017) Fowler Nordheim theory of carbon nanotube based field emitters. Phys B Condens Matter 505:1–8. https://doi.org/10.1016/j.physb.2016.10.031

    Article  Google Scholar 

  110. Li Y, Sun Y, Yeow JTW (2015) Nanotube field electron emission: principles, development, and applications. Nanotechnology 26:242001. https://doi.org/10.1088/0957-4484/26/24/242001

    Article  Google Scholar 

  111. Chouhan V, Noguchi T, Kato S (2016) Field emission from optimized structure of carbon nanotube field emitter array. J Appl Phys 119:134303. https://doi.org/10.1063/1.4945581

    Article  Google Scholar 

  112. Lin P-H, Sie C-L, Chen C-A et al (2015) Field emission characteristics of the structure of vertically aligned carbon nanotube bundles. Nanoscale Res Lett 10:297. https://doi.org/10.1186/s11671-015-1005-1

    Article  Google Scholar 

  113. Gupta BK, Kedawat G, Gangwar AK et al (2018) High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures. AIP Adv 8:015117. https://doi.org/10.1063/1.5004769

    Article  Google Scholar 

  114. Chhowalla M, Ducati C, Rupesinghe NL et al (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79:2079–2081. https://doi.org/10.1063/1.1406557

    Article  Google Scholar 

  115. Kumar A, Husain S, Ali J et al (2012) Field emission study of carbon nanotubes forest and array grown on si using fe as catalyst deposited by electro-chemical method. J Nanosci Nanotechnol 12:2829–2832. https://doi.org/10.1166/jnn.2012.5806

    Article  Google Scholar 

  116. Parveen S, Husain S, Kumar A et al (2015) Improved field emission properties of carbon nanotubes by dual layer deposition. J Exp Nanosci 10:499–510. https://doi.org/10.1080/17458080.2013.845914

    Article  Google Scholar 

  117. Cheng TC, Shieh J, Huang WJ et al (2006) Hydrogen plasma dry etching method for field emission application. Appl Phys Lett 88:263118. https://doi.org/10.1063/1.2218824

    Article  Google Scholar 

  118. Kumar A, Parveen S, Husain S et al (2014) Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system. J Appl Phys 115:084308. https://doi.org/10.1063/1.4866995

    Article  Google Scholar 

  119. Lone MY, Kumar A, Husain S et al (2017) Growth of single wall carbon nanotubes using PECVD technique: an efficient chemiresistor gas sensor. Phys E Low-Dimensional Syst Nanostructures 87:261–265. https://doi.org/10.1016/j.physe.2016.10.049

    Article  Google Scholar 

  120. Lone MY, Kumar A, Ansari N et al (2019) Structural effect of SWCNTs grown by PECVD towards NH3 gas sensing and field emission properties. Mater Res Bull 119:110532. https://doi.org/10.1016/j.materresbull.2019.110532

    Article  Google Scholar 

  121. Lone MY, Kumar A, Husain S et al (2019) Fabrication of sensitive SWCNT sensor for trace level detection of reducing and oxidizing gases (NH3 and NO2) at room temperature. Phys E Low-Dimensional Syst Nanostruct 108:206–214. https://doi.org/10.1016/j.physe.2018.11.020

    Article  Google Scholar 

  122. Song H, Li K, Wang C (2018) Selective detection of NO and NO2 with CNTs-based ionization sensor array. Micromachines 9:354. https://doi.org/10.3390/mi9070354

    Article  Google Scholar 

  123. Mirzaei A, Lee J-H, Majhi SM et al (2019) Resistive gas sensors based on metal-oxide nanowires. J Appl Phys 126:241102. https://doi.org/10.1063/1.5118805

    Article  Google Scholar 

  124. Snow ES, Perkins FK, Houser EJ et al (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1945. https://doi.org/10.1126/science.1109128

    Article  Google Scholar 

  125. Nguyet QTM, Van Duy N, Manh Hung C et al (2018) Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires. Appl Phys Lett 112:153110. https://doi.org/10.1063/1.5023851

    Article  Google Scholar 

  126. Obite F, Ijeomah G, Bassi JS (2019) Carbon nanotube field effect transistors: toward future nanoscale electronics. Int J Comput Appl 41:149–164. https://doi.org/10.1080/1206212X.2017.1415111

    Article  Google Scholar 

  127. Wind SJ, Appenzeller J, Martel R et al (2002) Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl Phys Lett 80:3817–3819. https://doi.org/10.1063/1.1480877

    Article  Google Scholar 

  128. Javey A, Kim H, Brink M et al (2002) High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 1:241–246. https://doi.org/10.1038/nmat769

    Article  Google Scholar 

  129. Javey A, Guo J, Wang Q et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657. https://doi.org/10.1038/nature01797

    Article  Google Scholar 

  130. Martel R, Schmidt T, Shea HR et al (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447. https://doi.org/10.1063/1.122477

    Article  Google Scholar 

  131. Kocabas C, Hur S-H, Gaur A et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1:1110–1116. https://doi.org/10.1002/smll.200500120

    Article  Google Scholar 

  132. Besteman K, Lee J-O, Wiertz FGM et al (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730. https://doi.org/10.1021/nl034139u

    Article  Google Scholar 

  133. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52. https://doi.org/10.1038/29954

    Article  Google Scholar 

  134. Rutherglen C, Kane AA, Marsh PF et al (2019) Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat Electron 2:530–539. https://doi.org/10.1038/s41928-019-0326-y

    Article  Google Scholar 

  135. Cao Y, Brady GJ, Gui H et al (2016) Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 10:6782–6790. https://doi.org/10.1021/acsnano.6b02395

    Article  Google Scholar 

  136. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468. https://doi.org/10.1007/s00216-006-0314-8

    Article  Google Scholar 

  137. Kumar MA, Jung S, Ji T (2011) Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods. Sensors 11:5087–5111. https://doi.org/10.3390/s110505087

    Article  Google Scholar 

  138. Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, Ramakrishna S (2018) A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 4:36–57. https://doi.org/10.1080/20550324.2018.1478765

    Article  Google Scholar 

  139. Cai H, Cao X, Jiang Y et al (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375:287–293. https://doi.org/10.1007/s00216-002-1652-9

    Article  Google Scholar 

  140. Chen H, Huang J, Fam D, Tok A (2016) Horizontally aligned carbon nanotube based biosensors for protein detection. Bioengineering 3:23. https://doi.org/10.3390/bioengineering3040023

    Article  Google Scholar 

  141. Gholizadeh A, Shahrokhian S, Iraji zad A, et al (2012) Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Anal Chem 84:5932–5938. https://doi.org/10.1021/ac300463x

    Article  Google Scholar 

  142. Gholizadeh A, Shahrokhian S, Iraji zad A et al (2012) Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate. Biosens Bioelectron 31:110–115. https://doi.org/10.1016/j.bios.2011.10.002

  143. Kim W-S, Lee G-J, Ryu J-H et al (2014) A flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays. RSC Adv 4:48310–48316. https://doi.org/10.1039/C4RA07615J

    Article  Google Scholar 

  144. Tîlmaciu C-M, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3. https://doi.org/10.3389/fchem.2015.00059

  145. Gao M, Dai L, Wallace GG (2003) Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15:1089–1094. https://doi.org/10.1002/elan.200390131

    Article  Google Scholar 

  146. Fayazfar H, Afshar A, Dolati M, Dolati A (2014) DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode. Anal Chim Acta 836:34–44. https://doi.org/10.1016/j.aca.2014.05.029

    Article  Google Scholar 

  147. Zhu Z, Garcia-Gancedo L, Flewitt AJ et al (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12:5996–6022. https://doi.org/10.3390/s120505996

    Article  Google Scholar 

  148. Zhao K, Zhuang S, Chang Z et al (2007) Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis 19:1069–1074. https://doi.org/10.1002/elan.200603823

    Article  Google Scholar 

  149. Yang Q, Qu Y, Bo Y et al (2010) Biosensor for atrazin based on aligned carbon nanotubes modified with glucose oxidase. Microchim Acta 168:197–203. https://doi.org/10.1007/s00604-009-0272-x

    Article  Google Scholar 

  150. Zilli D, Bonelli PR, Cukierman AL (2006) Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays. Nanotechnology 17:5136–5141. https://doi.org/10.1088/0957-4484/17/20/016

    Article  Google Scholar 

  151. Lu Z, Raad R, Safaei F et al (2019) Carbon nanotube based fiber supercapacitor as wearable energy storage. Front Mater 6. https://doi.org/10.3389/fmats.2019.00138

  152. Kim YJ, Kim YA, Chino T et al (2006) Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2:339–345. https://doi.org/10.1002/smll.200500327

    Article  Google Scholar 

  153. Landi BJ, Castro SL, Ruf HJ et al (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733–746. https://doi.org/10.1016/j.solmat.2004.07.047

    Article  Google Scholar 

  154. Kim C, Kim YJ, Kim YA et al (2004) High performance of cup-stacked-type carbon nanotubes as a Pt–Ru catalyst support for fuel cell applications. J Appl Phys 96:5903–5905. https://doi.org/10.1063/1.1804242

    Article  Google Scholar 

  155. Shimoda H, Gao B, Tang XP et al (2001) Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties. Phys Rev Lett 88:015502. https://doi.org/10.1103/PhysRevLett.88.015502

    Article  Google Scholar 

  156. Wang K, Luo S, Wu Y et al (2013) Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv Funct Mater 23:846–853. https://doi.org/10.1002/adfm.201202412

    Article  Google Scholar 

  157. Park J, Moon WG, Kim G-P et al (2013) Three-dimensional aligned mesoporous carbon nanotubes filled with CO3O4 nanoparticles for Li-ion battery anode applications. Electrochim Acta 105:110–114. https://doi.org/10.1016/j.electacta.2013.04.170

    Article  Google Scholar 

  158. Dogru IB, Durukan MB, Turel O, Unalan HE (2016) Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils. Prog Nat Sci Mater Int 26:232–236. https://doi.org/10.1016/j.pnsc.2016.05.011

    Article  Google Scholar 

  159. Niu C, Sichel EK, Hoch R et al (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482. https://doi.org/10.1063/1.118568

    Article  Google Scholar 

  160. Barisci JN, Wallace GG, Baughman RH (2000) Electrochemical characterization of single-walled carbon nanotube electrodes. J Electrochem Soc 147:4580. https://doi.org/10.1149/1.1394104

    Article  Google Scholar 

  161. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668. https://doi.org/10.1007/s11671-009-9508-2

    Article  Google Scholar 

  162. Klinger C, Patel Y, Postma HWC (2012) Carbon nanotube solar cells. PLoS ONE 7:e37806. https://doi.org/10.1371/journal.pone.0037806

    Article  Google Scholar 

  163. Li X, Jung Y, Sakimoto K et al (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6:879. https://doi.org/10.1039/c2ee23716d

    Article  Google Scholar 

  164. Nguyen CT-C (1999) Frequency-selective MEMS for miniaturized low-power communication devices. IEEE Trans Microw Theory Tech 47:1486–1503. https://doi.org/10.1109/22.780400

    Article  Google Scholar 

  165. Roukes M (2001) Nanoelectromechanical systems face the future. Phys World 14:25–32. https://doi.org/10.1088/2058-7058/14/2/29

    Article  Google Scholar 

  166. LaHaye MD (2004) Approaching the quantum limit of a nanomechanical resonator. Science (80–) 304:74–77. https://doi.org/10.1126/science.1094419

  167. Lassagne B, Garcia-Sanchez D, Aguasca A, Bachtold A (2008) Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett 8:3735–3738. https://doi.org/10.1021/nl801982v

    Article  Google Scholar 

  168. Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503:115–163. https://doi.org/10.1016/j.physrep.2011.03.002

    Article  Google Scholar 

  169. Zheng M, Eom K, Ke C (2009) Calculations of the resonant response of carbon nanotubes to binding of DNA. J Phys D Appl Phys 42:145408. https://doi.org/10.1088/0022-3727/42/14/145408

    Article  Google Scholar 

  170. Laocharoensuk R, Burdick J, Wang J (2008) Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2:1069–1075. https://doi.org/10.1021/nn800154g

    Article  Google Scholar 

  171. Fennimore AM, Yuzvinsky TD, Han W-Q et al (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410. https://doi.org/10.1038/nature01823

    Article  Google Scholar 

  172. Narang J, Pundir CS (2018) Current and future developments in nanomaterials and carbon nanotubes introduction to carbon nanomaterials. Bentham Science Publishers

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Director, CSIR-CEERI, for his keen interest and encouragement. One of the authors (P. B. Agarwal) gratefully acknowledges the members of Smart Sensors Area, CSIR-CEERI, Pilani, Rajasthan, India for their valuable suggestions and continuous cooperation. Support of CSIR project OLP5101 and HCP0012 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, P.B., Islam, S.M., Agarwal, R., Kumar, N., Kumar, A. (2021). Carbon Nanotube Alignment Techniques and Their Sensing Applications. In: Hazra, A., Goswami, R. (eds) Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1052-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1052-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1051-6

  • Online ISBN: 978-981-16-1052-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics