Skip to main content

Hydrogen Sulfide and the Kidney

  • Chapter
  • First Online:
Advances in Hydrogen Sulfide Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1315))

Abstract

Hydrogen sulfide (H2S) is constitutively synthesized in the kidney. Recent investigations suggest a role for H2S in the regulation of fundamental kidney physiological events including arterial blood flow, glomerular filtration, and electrolyte and water transport. Deficiency of H2S generation has been implicated in acute kidney injury brought on by ischemia, administration of nephrotoxic medications, and obstruction. A role for impaired H2S expression has been shown in chronic kidney injury seen with chronic heart failure, obesity, and diabetes. Deficient H2S generation by the kidney could contribute to blood pressure dysregulation in models of hypertension and preeclampsia. Aging induced chronic kidney impairment is associated with inadequate H2S generation in the kidney. The mechanistic pathways regulated by H2S include but not limited to transcription, mRNA translation, signaling, inflammation, and oxidative stress demonstrating the versatility of the gasotransmitter. In the aforementioned conditions amelioration of kidney injury has been reported by the administration of agents that provide H2S. In renal cancer H2S may participate as an injurious agent. Overall, research on H2S in the kidney is in its early stages, and it is becoming evident that it has a context-dependent nuanced role in various kidney pathologies. There is an urgent need for exploration of H2S in physiology and pathology of the kidney including its role in oxygen sensing and glomerulonephritis. H2S may prove to be a novel therapeutic agent in some kidney disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MST:

3-mercaptopyruvate sulfurtransferase

AAT:

Aspartate amino transferase

ACC:

Acetyl-CoA carboxylase

AE1:

Anion exchanger-1

AKI:

Acute kidney injury

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

AQP2:

Aquaporin-2

AT1:

Angiotensin receptor type 1

ATP:

Adenosine triphosphate

ATPase:

Adenosine triphosphatase

Bnip3:

BCL2/adenovirus E1B 19kDA-interacting protein

CBS:

Cystathionine β-synthase

ccRCC:

Clear cell renal cell carcinoma

cGMP:

Cyclic guanosine monophosphate

CHF:

Congestive heart failure

CKD:

Chronic kidney disease

CO:

Carbon monoxide

CSE:

Cystathionine γ-lyase

DAO:

D-amino acid oxidase

DKD:

Diabetic kidney disease

EGF:

Epidermal growth factor

EMT:

Epithelial-mesenchymal transition

ENaC:

Epithelial Na channel

eNOS:

Endothelial NO synthase

ER:

Dietary restriction

ERK:

Extracellular-signal-regulated kinase

ESKD:

End stage kidney disease

FGF23:

Fibroblast growth factor 23

FOXO3:

Forkhead box O3

GFR:

Glomerular filtration rate

GSK-3β:

Glycogen synthase kinase-3β

H2S:

Hydrogen sulfide

HIF:

Hypoxia inducible factor

HO-2:

Hemoxygenase-2

HS:

Hydrosulfide

IGF1:

Insulin-like growth factor 1

IL:

Interleukin

iNOS:

Inducible NO synthase

IRI:

Ischemic renal injury

IRβ:

Insulin receptor β

JNK:

c-Jun N-terminal kinase

KIM-1:

Kidney injury molecule-1

MAP kinase:

Mitogen-activated protein kinase

miR:

microrna

MMP:

Matrix metalloprotease

mTORC1:

Mechanistic target of rapamycin complex 1

NAD:

Nicotinamide adenine dinucleotide

NaHS:

Sodium hydrosulfide

NFκB:

Nuclear factor κ B

NMDA:

N-methyl D-aspartate

NO:

Nitric oxide

NOX:

NADPH (nicotinamide adenine dinucleotide phosphate) oxidase

Nrf-2:

Nuclear factor erythroid-2 related factor-2

PARP-1:

Poly(ADP ribose) polymerase-1

PI 3 kinase:

Phosphoinositide 3 kinase

PKG-II:

cGMP activated protein kinase G-II

PlGF:

Placental growth factor

PTEN:

Phosphatase and tensin homolog

RCC:

Renal cell carcinoma

ROS:

Reactive oxygen species

SASP:

Senescence associated secretory phenotype

sFlt1:

Soluble fms-like tyrosine kinase

sGC:

Soluble guanylyl cyclase

Sirt:

Sirtuin

TGFβ:

Transforming growth factor β

TNFα:

Tumor necrosis factor α

VEGF:

Vascular endothelial growth factor

References

  1. Wachtershauser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201

    Article  CAS  PubMed  Google Scholar 

  2. Olson KR, Straub KD (2016) The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda) 31:60–72

    CAS  Google Scholar 

  3. Kasinath BS, Feliers D, Lee HJ (2018) Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochem Pharmacol 149:29–41

    Article  CAS  PubMed  Google Scholar 

  4. Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vicente JB, Malagrino F, Arese M, Forte E, Sarti P, Giuffre A (2016) Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine beta-synthase. Biochim Biophys Acta 1857:1127–1138

    Article  CAS  PubMed  Google Scholar 

  6. Bos EM, Wang R, Snijder PM, Boersema M, Damman J, Fu M, Moser J, Hillebrands JL, Ploeg RJ, Yang G et al (2013) Cystathionine gamma-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol 24:759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee HJ, Mariappan MM, Feliers D, Cavaglieri RC, Sataranatarajan K, Abboud HE, Choudhury GG, Kasinath BS (2012) Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem 287:4451–4461

    Article  CAS  PubMed  Google Scholar 

  8. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  CAS  Google Scholar 

  9. Czyzewski BK, Wang DN (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perna AF, Di Nunzio A, Amoresano A, Pane F, Fontanarosa C, Pucci P, Vigorito C, Cirillo G, Zacchia M, Trepiccione F et al (2016) Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie 126:97–107

    Article  CAS  PubMed  Google Scholar 

  11. Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E (1999) Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Invest 104:1107–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Berg E, Pasch A, Westendorp WH, Navis G, Brink EJ, Gans RO, van Goor H, Bakker SJ (2014) Urinary sulfur metabolites associate with a favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J Am Soc Nephrol 25:1303–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Newman EV, Gilman A, Philips FS (1946) The renal clearance of thiosulfate in man. Bull Johns Hopkins Hosp 79:229–242

    CAS  PubMed  Google Scholar 

  14. Ullrich KJ, Rumrich G, Kloss S (1980) Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. Pflugers Arch 387:127–132

    Article  CAS  PubMed  Google Scholar 

  15. Beck L, Silve C (2001) Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int 59:835–845

    Article  CAS  PubMed  Google Scholar 

  16. Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jennings ML (2013) Transport of H2S and HS(−) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(−)/HS(−) exchange. Am J Physiol Cell Physiol 305:C941–C950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kollert-Jons A, Wagner S, Hubner S, Appelhans H, Drenckhahn D (1993) Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 265:F813–F821

    CAS  PubMed  Google Scholar 

  19. Jensen B, Fago A (2020) A novel possible role for met hemoglobin as carrier of hydrogen sulfide in the blood. Antioxid Redox Signal 32:258–265

    Article  CAS  PubMed  Google Scholar 

  20. Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD (2014) The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 9:1461–1469

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xia M, Chen L, Muh RW, Li PL, Li N (2009) Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther 329:1056–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu M, Liu YH, Goh HS, Wang JJ, Yong QC, Wang R, Bian JS (2010) Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21:993–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Susztak K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638

    Article  CAS  PubMed  Google Scholar 

  25. Hoenig MP, Zeidel ML (2014) Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol 9:1272–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10:135–146

    Article  CAS  PubMed  Google Scholar 

  27. Ge SN, Zhao MM, Wu DD, Chen Y, Wang Y, Zhu JH, Cai WJ, Zhu YZ, Zhu YC (2014) Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na(+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid Redox Signal 21:2061–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu L, Bao HF, Self JL, Eaton DC, Helms MN (2007) Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. Am J Physiol Renal Physiol 293:F1666–F1677

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Chen S, Liu H, Zhang B, Zhao Y, Ma K, Zhao D, Wang Q, Ma H, Zhang Z (2013a) Hydrogen sulfide prevents hydrogen peroxide-induced activation of epithelial sodium channel through a PTEN/PI(3,4,5)P3 dependent pathway. PLoS One 8:e64304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clausen MV, Hilbers F, Poulsen H (2017) The structure and function of the Na,K-ATPase isoforms in health and disease. Front Physiol 8:371

    Article  PubMed  PubMed Central  Google Scholar 

  31. Knepper MA, Kwon TH, Nielsen S (2015) Molecular physiology of water balance. N Engl J Med 373:196

    Article  CAS  PubMed  Google Scholar 

  32. Luo R, Hu S, Liu Q, Han M, Wang F, Qiu M, Li S, Li X, Yang T, Fu X et al (2019) Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration. FASEB J 33:469–483

    Article  CAS  PubMed  Google Scholar 

  33. Davis J, Desmond M, Berk M (2018) Lithium and nephrotoxicity: a literature review of approaches to clinical management and risk stratification. BMC Nephrol 19:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurtz A (2017) Endocrine functions of the renal interstitium. Pflugers Arch 469:869–876

    Article  CAS  PubMed  Google Scholar 

  35. Zeisberg M, Kalluri R (2015) Physiology of the renal interstitium. Clin J Am Soc Nephrol 10:1831–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219

    Article  PubMed  PubMed Central  Google Scholar 

  37. Semenza GL, Prabhakar NR (2018) The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol 596:2977–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan G, Vasavda C, Peng YJ, Makarenko VV, Raghuraman G, Nanduri J, Gadalla MM, Semenza GL, Kumar GK, Snyder SH et al (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8:ra37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Peng YJ, Zhang X, Gridina A, Chupikova I, McCormick DL, Thomas RJ, Scammell TE, Kim G, Vasavda C, Nanduri J et al (2017) Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci USA 114:1413–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dombkowski RA, Naylor MG, Shoemaker E, Smith M, DeLeon ER, Stoy GF, Gao Y, Olson KR (2011) Hydrogen sulfide (H(2)S) and hypoxia inhibit salmonid gastrointestinal motility: evidence for H(2)S as an oxygen sensor. J Exp Biol 214:4030–4040

    Article  CAS  PubMed  Google Scholar 

  41. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023

    Article  CAS  PubMed  Google Scholar 

  42. Lobb I, Zhu J, Liu W, Haig A, Lan Z, Sener A (2014) Hydrogen sulfide treatment ameliorates long-term renal dysfunction resulting from prolonged warm renal ischemia-reperfusion injury. Can Urol Assoc J 8:E413–E418

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tripatara P, Patel NS, Collino M, Gallicchio M, Kieswich J, Castiglia S, Benetti E, Stewart KN, Brown PA, Yaqoob MM et al (2008) Generation of endogenous hydrogen sulfide by cystathionine gamma-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest 88:1038–1048

    Article  CAS  PubMed  Google Scholar 

  44. Bos EM, Leuvenink HG, Snijder PM, Kloosterhuis NJ, Hillebrands JL, Leemans JC, Florquin S, van Goor H (2009) Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol 20:1901–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lobb I, Davison M, Carter D, Liu W, Haig A, Gunaratnam L, Sener A (2015) Hydrogen sulfide treatment mitigates renal allograft ischemia-reperfusion injury during cold storage and improves early transplant kidney function and survival following allogeneic renal transplantation. J Urol 194:1806–1815

    Article  CAS  PubMed  Google Scholar 

  46. Kangas J, Savolainen H (1987) Urinary thiosulphate as an indicator of exposure to hydrogen sulphide vapour. Clin Chim Acta 164:7–10

    Article  CAS  PubMed  Google Scholar 

  47. Szczesny B, Modis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmad A, Olah G, Szczesny B, Wood ME, Whiteman M, Szabo C (2016a) AP39, a mitochondrially targeted hydrogen sulfide donor, exerts protective effects in renal epithelial cells subjected to oxidative stress in vitro and in acute renal injury in vivo. Shock 45:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, Henning RH (2015) Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - the role of renal H2S-producing enzymes. Eur J Pharmacol 769:225–233

    Article  CAS  PubMed  Google Scholar 

  50. Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR (2017) Renal mitochondrial response to low temperature in non-hibernating and hibernating species. Antioxid Redox Signal 27:599–617

    Article  CAS  PubMed  Google Scholar 

  51. Zancanaro C, Malatesta M, Mannello F, Vogel P, Fakan S (1999) The kidney during hibernation and arousal from hibernation. A natural model of organ preservation during cold ischaemia and reperfusion. Nephrol Dial Transplant 14:1982–1990

    Article  CAS  PubMed  Google Scholar 

  52. Revsbech IG, Shen X, Chakravarti R, Jensen FB, Thiel B, Evans AL, Kindberg J, Frobert O, Stuehr DJ, Kevil CG et al (2014) Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radic Biol Med 73:349–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hemelrijk SD, Dirkes MC, van Velzen MHN, Bezemer R, van Gulik TM, Heger M (2018) Exogenous hydrogen sulfide gas does not induce hypothermia in normoxic mice. Sci Rep 8:3855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Trevino-Villarreal JH, Mejia P, Ozaki CK et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–144

    Article  CAS  PubMed  Google Scholar 

  55. Teksen Y, Kadioglu E, Kocak C, Kocak H (2019) Effect of hydrogen sulfide on kidney injury in rat model of crush syndrome. J Surg Res 235:470–478

    Article  CAS  PubMed  Google Scholar 

  56. Otunctemur A, Ozbek E, Dursun M, Sahin S, Besiroglu H, Ozsoy OD, Cekmen M, Somay A, Ozbay N (2014) Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Ren Fail 36:925–931

    Article  PubMed  Google Scholar 

  57. Pedraza-Chaverri J, Gonzalez-Orozco AE, Maldonado PD, Barrera D, Medina-Campos ON, Hernandez-Pando R (2003) Diallyl disulfide ameliorates gentamicin-induced oxidative stress and nephropathy in rats. Eur J Pharmacol 473:71–78

    Article  CAS  PubMed  Google Scholar 

  58. Pedraza-Chaverri J, Maldonado PD, Medina-Campos ON, Olivares-Corichi IM, Granados-Silvestre MA, Hernandez-Pando R, Ibarra-Rubio ME (2000) Garlic ameliorates gentamicin nephrotoxicity: relation to antioxidant enzymes. Free Radic Biol Med 29:602–611

    Article  CAS  PubMed  Google Scholar 

  59. Aziz NM, Elbassuoni EA, Kamel MY, Ahmed SM (2020) Hydrogen sulfide renal protective effects: possible link between hydrogen sulfide and endogenous carbon monoxide in a rat model of renal injury. Cell Stress Chaperones 25:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31:15–25

    Article  CAS  PubMed  Google Scholar 

  61. Della Coletta Francescato H, Cunha FQ, Costa RS, Barbosa Junior F, Boim MA, Arnoni CP, da Silva CG, Coimbra TM (2011) Inhibition of hydrogen sulphide formation reduces cisplatin-induced renal damage. Nephrol Dial Transplant 26:479–488

    Article  PubMed  CAS  Google Scholar 

  62. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol 169:922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu M, Jia Z, Sun Y, Zhang A, Yang T (2016) A H 2 S Donor GYY4137 exacerbates cisplatin-induced nephrotoxicity in mice. Mediators Inflamm 2016:8145785

    PubMed  PubMed Central  Google Scholar 

  64. Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu Y, Wood ME, Whiteman M, Moore PK, Bian JS (2018a) Renal protective effect of hydrogen sulfide in cisplatin-induced nephrotoxicity. Antioxid Redox Signal 29:455–470

    Article  CAS  PubMed  Google Scholar 

  65. Dugbartey GJ, Bouma HR, Lobb I, Sener A (2016) Hydrogen sulfide: a novel nephroprotectant against cisplatin-induced renal toxicity. Nitric Oxide 57:15–20

    Article  CAS  PubMed  Google Scholar 

  66. Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015a) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore PK, Bian JS (2018b) Renal protective effect of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol 15:513–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nair N, Gongora E (2017) Oxidative stress and cardiovascular aging: interaction between NRF-2 and ADMA. Curr Cardiol Rev 13:183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdollahzade Fard A, Ahangarpour A, Gharibnaseri MK, Jalali T, Rashidi I, Ahmadzadeh M (2013) Effects of hydrogen sulfide on oxidative stress, TNF-α level and kidney histological changes in cisplatin nephrotoxicity in rat. J Phys Pharm Adv 3:57–65

    Article  Google Scholar 

  70. Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiarandini Fiore JP, Fanelli SL, de Ferreyra EC, Castro JA (2008) Diallyl disulfide prevention of cis-Diamminedichloroplatinum-induced nephrotoxicity and leukopenia in rats: potential adjuvant effects. Nutr Cancer 60:784–791

    Article  CAS  PubMed  Google Scholar 

  72. Elkhoely A, Kamel R (2018) Diallyl sulfide alleviates cisplatin-induced nephrotoxicity in rats via suppressing NF-kappaB downstream inflammatory proteins and p53/Puma signalling pathway. Clin Exp Pharmacol Physiol 45:591–601

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Ren X, Zhang Q, Li Z, Ma S, Bao J, Li Z, Bai X, Zheng L, Zhang Z et al (2016) PGC-1alpha/ERR alpha-Sirt3 pathway regulates daergic neuronal death by directly deacetylating SOD2 and ATP synthase beta. Antioxid Redox Signal 24:312–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC, Gupta MP (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34:807–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Perico L, Morigi M, Rota C, Breno M, Mele C, Noris M, Introna M, Capelli C, Longaretti L, Rottoli D et al (2017) Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat Commun 8:983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gero D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M (2016) The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 113:186–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yuan Y, Zhu L, Li L, Liu J, Chen Y, Cheng J, Peng T, Lu Y (2019) S-sulfhydration of SIRT3 by hydrogen sulfide attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Antioxid Redox Signal 31:1302–1319

    Article  CAS  PubMed  Google Scholar 

  78. Cao X, Zhang W, Moore PK, Bian J (2019) Protective smell of hydrogen sulfide and polysulfide in cisplatin-induced nephrotoxicity. Int J Mol Sci 20:313

    Article  PubMed Central  CAS  Google Scholar 

  79. Song K, Wang F, Li Q, Shi YB, Zheng HF, Peng H, Shen HY, Liu CF, Hu LF (2014) Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int 85:1318–1329

    Article  CAS  PubMed  Google Scholar 

  80. Han SJ, Noh MR, Jung JM, Ishii I, Yoo J, Kim JI, Park KM (2017) Hydrogen sulfide-producing cystathionine gamma-lyase is critical in the progression of kidney fibrosis. Free Radic Biol Med 112:423–432

    Article  CAS  PubMed  Google Scholar 

  81. Lin S, Visram F, Liu W, Haig A, Jiang J, Mok A, Lian D, Wood ME, Torregrossa R, Whiteman M et al (2016) GYY4137, a slow-releasing hydrogen sulfide donor, ameliorates renal damage associated with chronic obstructive uropathy. J Urol 196:1778–1787

    Article  CAS  PubMed  Google Scholar 

  82. Guo L, Peng W, Tao J, Lan Z, Hei H, Tian L, Pan W, Wang L, Zhang X (2016) Hydrogen sulfide inhibits transforming growth factor-beta1-induced EMT via Wnt/catenin pathway. PLoS One 11:e0147018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lin S, Juriasingani S, Sener A (2018) Is hydrogen sulfide a potential novel therapy to prevent renal damage during ureteral obstruction? Nitric Oxide 73:15–21

    Article  CAS  PubMed  Google Scholar 

  84. Ahmad A, Druzhyna N, Szabo C (2017) Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn. Burns 43:1021–1033

    Article  PubMed  Google Scholar 

  85. Ahmad A, Gero D, Olah G, Szabo C (2016b) Effect of endotoxemia in mice genetically deficient in cystathionine-gamma-lyase, cystathionine-beta-synthase or 3-mercaptopyruvate sulfurtransferase. Int J Mol Med 38:1683–1692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Marko L, Szijarto IA, Filipovic MR, Kassmann M, Balogh A, Park JK, Przybyl L, N'Diaye G, Kramer S, Anders J et al (2016) Role of cystathionine gamma-lyase in immediate renal impairment and inflammatory response in acute ischemic kidney injury. Sci Rep 6:27517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  88. Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD (2018) Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23(869–881):e868

    Google Scholar 

  89. Wu H, Lai CF, Chang-Panesso M, Humphreys BD (2020) Proximal tubule translational profiling during kidney fibrosis reveals proinflammatory and long noncoding RNA expression patterns with sexual dimorphism. J Am Soc Nephrol 31:23–38

    Article  CAS  PubMed  Google Scholar 

  90. Perna AF, Luciano MG, Ingrosso D, Pulzella P, Sepe I, Lanza D, Violetti E, Capasso R, Lombardi C, De Santo NG (2009) Hydrogen sulphide-generating pathways in haemodialysis patients: a study on relevant metabolites and transcriptional regulation of genes encoding for key enzymes. Nephrol Dial Transplant 24:3756–3763

    Article  CAS  PubMed  Google Scholar 

  91. Vigorito C, Anishchenko E, Mele L, Capolongo G, Trepiccione F, Zacchia M, Lombari P, Capasso R, Ingrosso D, Perna AF (2019) Uremic toxin lanthionine interferes with the transsulfuration pathway, angiogenetic signaling and increases intracellular calcium. Int J Mol Sci 20:2269

    Article  CAS  PubMed Central  Google Scholar 

  92. Kuang Q, Xue N, Chen J, Shen Z, Cui X, Fang Y, Ding X (2018) Low plasma hydrogen sulfide is associated with impaired renal function and cardiac dysfunction. Am J Nephrol 47:361–371

    Article  CAS  PubMed  Google Scholar 

  93. Bibli SI, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B et al (2019) Cystathionine gamma lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation 139:101–114

    Article  CAS  PubMed  Google Scholar 

  94. Said MY, Post A, Minovic I, van Londen M, van Goor H, Postmus D, Heiner-Fokkema MR, van den Berg E, Pasch A, Navis G et al (2020) Urinary sulfate excretion and risk of late graft failure in renal transplant recipients - a prospective cohort study. Transpl Int 33:752–761

    Article  CAS  PubMed  Google Scholar 

  95. Aminzadeh MA, Vaziri ND (2012) Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease. Nephrol Dial Transplant 27:498–504

    Article  CAS  PubMed  Google Scholar 

  96. Cooke D, Ouattara A, Ables GP (2018) Dietary methionine restriction modulates renal response and attenuates kidney injury in mice. FASEB J 32:693–702

    Article  CAS  PubMed  Google Scholar 

  97. Jager A, Kostense PJ, Nijpels G, Dekker JM, Heine RJ, Bouter LM, Donker AJ, Stehouwer CD (2001) Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol 21:74–81

    Article  CAS  PubMed  Google Scholar 

  98. Miller JW, Nadeau MR, Smith D, Selhub J (1994) Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr 59:1033–1039

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Shi S, Dong S, Wu J, Song M, Zhong X, Liu Y (2015) Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem 399:189–200

    Article  CAS  PubMed  Google Scholar 

  100. Li JJ, Li Q, Du HP, Wang YL, You SJ, Wang F, Xu XS, Cheng J, Cao YJ, Liu CF et al (2015) Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. Int J Mol Sci 16:12560–12577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N (2013) Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 252:302–319

    Article  CAS  PubMed  Google Scholar 

  102. Pushpakumar S, Kundu S, Sen U (2014) Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 21:3662–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sen U, Sathnur PB, Kundu S, Givvimani S, Coley DM, Mishra PK, Qipshidze N, Tyagi N, Metreveli N, Tyagi SC (2012) Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. Am J Physiol Cell Physiol 303:C41–C51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sen U, Basu P, Abe OA, Givvimani S, Tyagi N, Metreveli N, Shah KS, Passmore JC, Tyagi SC (2009) Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Renal Physiol 297:F410–F419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sen U, Munjal C, Qipshidze N, Abe O, Gargoum R, Tyagi SC (2010) Hydrogen sulfide regulates homocysteine-mediated glomerulosclerosis. Am J Nephrol 31:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pushpakumar S, Kundu S, Sen U (2019) Hydrogen sulfide protects hyperhomocysteinemia-induced renal damage by modulation of caveolin and eNOS interaction. Sci Rep 9:2223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pasch A, Schaffner T, Huynh-Do U, Frey BM, Frey FJ, Farese S (2008) Sodium thiosulfate prevents vascular calcifications in uremic rats. Kidney Int 74:1444–1453

    Article  CAS  PubMed  Google Scholar 

  108. Huang Y, Zhang Z, Huang Y, Mao Z, Yang X, Nakamura Y, Sawada N, Mitsui T, Takeda M, Yao J (2018a) Induction of inactive TGF-beta1 monomer formation by hydrogen sulfide contributes to its suppressive effects on Ang II- and TGF-beta1-induced EMT in renal tubular epithelial cells. Biochem Biophys Res Commun 501:534–540

    Article  CAS  PubMed  Google Scholar 

  109. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hirakawa Y, Tanaka T, Nangaku M (2017) Renal hypoxia in CKD; pathophysiology and detecting methods. Front Physiol 8:99

    Article  PubMed  PubMed Central  Google Scholar 

  111. Leigh J, Saha MN, Mok A, Champsi O, Wang R, Lobb I, Sener A (2016) Hydrogen sulfide induced erythropoietin synthesis is regulated by HIF proteins. J Urol 196:251–260

    Article  CAS  PubMed  Google Scholar 

  112. Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt KU (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464

    Article  CAS  PubMed  Google Scholar 

  113. Leigh J, Juriasingani S, Akbari M, Shao P, Saha MN, Lobb I, Bachtler M, Fernandez B, Qian Z, van Goor H et al (2018) Endogenous H2S production deficiencies lead to impaired renal erythropoietin production. Can Urol Assoc J 13:210–219

    Article  Google Scholar 

  114. Zhao P, Qian C, Chen YJ, Sheng Y, Ke Y, Qian ZM (2019) Cystathionine beta-synthase (CBS) deficiency suppresses erythropoiesis by disrupting expression of heme biosynthetic enzymes and transporter. Cell Death Dis 10:708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zhou YF, Wu XM, Zhou G, Mu MD, Zhang FL, Li FM, Qian C, Du F, Yung WH, Qian ZM et al (2018) Cystathionine beta-synthase is required for body iron homeostasis. Hepatology 67:21–35

    Article  CAS  PubMed  Google Scholar 

  116. Modis K, Ramanujam VS, Govar AA, Lopez E, Anderson KE, Wang R, Szabo C (2019) Cystathionine-gamma-lyase (CSE) deficiency increases erythropoiesis and promotes mitochondrial electron transport via the upregulation of coproporphyrinogen III oxidase and consequent stimulation of heme biosynthesis. Biochem Pharmacol 169:113604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, Lerma EV, Mezue K, Molitch M, Mullens W et al (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 139:e840–e878

    Article  PubMed  Google Scholar 

  118. Li Z, Organ CL, Kang J, Polhemus DJ, Trivedi RK, Sharp TE 3rd, Jenkins JS, Tao YX, Xian M, Lefer DJ (2018) Hydrogen sulfide attenuates renin angiotensin and aldosterone pathological signaling to preserve kidney function and improve exercise tolerance in heart failure. JACC Basic Transl Sci 3:796–809

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, Long MW, Gortmaker SL (2019) Projected U.S. state-level prevalence of adult Obesity and severe obesity. N Engl J Med 381:2440–2450

    Article  PubMed  Google Scholar 

  120. Choung HG, Bomback AS, Stokes MB, Santoriello D, Campenot ES, Batal I, Markowitz GS, D'Agati VD (2019) The spectrum of kidney biopsy findings in patients with morbid obesity. Kidney Int 95:647–654

    Article  PubMed  Google Scholar 

  121. Hashimoto Y, Tanaka M, Okada H, Senmaru T, Hamaguchi M, Asano M, Yamazaki M, Oda Y, Hasegawa G, Toda H et al (2015) Metabolically healthy obesity and risk of incident CKD. Clin J Am Soc Nephrol 10:578–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu M, Deng M, Su J, Lin Y, Jia Z, Peng K, Wang F, Yang T (2018) Specific downregulation of cystathionine beta-synthase expression in the kidney during obesity. Physiol Rep 6:e13630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wu D, Gao B, Li M, Yao L, Wang S, Chen M, Li H, Ma C, Ji A, Li Y (2016) Hydrogen sulfide mitigates kidney injury in high fat diet-induced obese mice. Oxid Med Cell Longev 2016:2715718

    PubMed  PubMed Central  Google Scholar 

  124. van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL, Complications DGIRTGDM (2016) Gasotransmitters in vascular complications of diabetes. Diabetes 65:331–345

    Article  PubMed  CAS  Google Scholar 

  125. Sen U, Pushpakumar S (2016) Mini-review: diabetic renal complications, a potential stinky remedy. Am J Physiol Renal Physiol 310:F119–F122

    Article  CAS  PubMed  Google Scholar 

  126. Dugbartey GJ (2017a) Diabetic nephropathy: a potential savior with ‘rotten-egg’ smell. Pharmacol Rep 69:331–339

    Article  CAS  PubMed  Google Scholar 

  127. Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo L, Lin Y, Nie XW, Bian JS (2019) Hydrogen sulfide: recent progression and perspectives for the treatment of diabetic nephropathy. Molecules 24:2857

    Article  CAS  PubMed Central  Google Scholar 

  128. Yang G, Tang G, Zhang L, Wu L, Wang R (2011) The pathogenic role of cystathionine gamma-lyase/hydrogen sulfide in streptozotocin-induced diabetes in mice. Am J Pathol 179:869–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12:1333–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li H, Feng SJ, Zhang GZ, Wang SX (2014) Correlation of lower concentrations of hydrogen sulfide with atherosclerosis in chronic hemodialysis patients with diabetic nephropathy. Blood Purif 38:188–194

    Article  CAS  PubMed  Google Scholar 

  131. John A, Kundu S, Pushpakumar S, Fordham M, Weber G, Mukhopadhyay M, Sen U (2017) GYY4137, a hydrogen sulfide donor modulates miR194-dependent collagen realignment in diabetic kidney. Sci Rep 7:10924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Kundu S, Pushpakumar SB, Tyagi A, Coley D, Sen U (2013) Hydrogen sulfide deficiency and diabetic renal remodeling: role of matrix metalloproteinase-9. Am J Physiol Endocrinol Metab 304:E1365–E1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z, Ni J, Yu C, Yao T, Huang Y et al (2011) Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant 26:2119–2126

    Article  CAS  PubMed  Google Scholar 

  134. Zhou X, Feng Y, Zhan Z, Chen J (2014) Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem 289:28827–28834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Qian X, Li X, Ma F, Luo S, Ge R, Zhu Y (2016) Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun 473:931–938

    Article  CAS  PubMed  Google Scholar 

  136. Xue H, Yuan P, Ni J, Li C, Shao D, Liu J, Shen Y, Wang Z, Zhou L, Zhang W et al (2013a) H(2)S inhibits hyperglycemia-induced intrarenal renin-angiotensin system activation via attenuation of reactive oxygen species generation. PLoS One 8:e74366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J et al (2013b) Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 19:5–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sharma K (2014) Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int 4:113–117

    Article  CAS  Google Scholar 

  140. Kimura N, Kimura H, Takahashi N, Hamada T, Maegawa H, Mori M, Imamura Y, Kusaka Y, Yoshida H, Iwano M (2015b) Renal resistive index correlates with peritubular capillary loss and arteriosclerosis in biopsy tissues from patients with chronic kidney disease. Clin Exp Nephrol 19:1114–1119

    Article  CAS  PubMed  Google Scholar 

  141. Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S, Kojima H, Maruyama S, Imai E, Matsuo S et al (2013) Distribution of hydrogen sulfide (H(2)S)-producing enzymes and the roles of the H(2)S donor sodium hydrosulfide in diabetic nephropathy. Clin Exp Nephrol 17:32–40

    Article  CAS  PubMed  Google Scholar 

  142. Papu John AS, Kundu S, Pushpakumar S, Amin M, Tyagi SC, Sen U (2019) Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in type-1 diabetes. Am J Physiol Endocrinol Metab 317:E269–E283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kasinath BS, Feliers D, Sataranatarajan K, Ghosh Choudhury G, Lee MJ, Mariappan MM (2009) Regulation of mRNA translation in renal physiology and disease. Am J Physiol Renal Physiol 297:F1153–F1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Feliers D, Duraisamy S, Faulkner JL, Duch J, Lee AV, Abboud HE, Choudhury GG, Kasinath BS (2001) Activation of renal signaling pathways in db/db mice with type 2 diabetes. Kidney Int 60:495–504

    Article  CAS  PubMed  Google Scholar 

  145. Feliers D, Lee HJ, Kasinath BS (2016) Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal 25:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, Foretz M, Viollet B, Weinberg JM, Choudhury GG et al (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 292:F617–F627

    Article  CAS  PubMed  Google Scholar 

  147. Mariappan MM, Shetty M, Sataranatarajan K, Choudhury GG, Kasinath BS (2008) Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. J Biol Chem 283:30566–30575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mariappan MM, D'Silva K, Lee MJ, Sataranatarajan K, Barnes JL, Choudhury GG, Kasinath BS (2011) Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. Am J Physiol Renal Physiol 300:F219–F230

    Article  CAS  PubMed  Google Scholar 

  149. Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL, Kasinath BS (2007) Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol 171:1733–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, Rama I, Vidal A, Grinyo JM (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17:1395–1404

    Article  CAS  PubMed  Google Scholar 

  151. Miyamoto S, Hsu CC, Hamm G, Darshi M, Diamond-Stanic M, Decleves AE, Slater L, Pennathur S, Stauber J, Dorrestein PC et al (2016) Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator. EBioMedicine 7:121–134

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J 459:275–287

    Article  CAS  PubMed  Google Scholar 

  153. Valentine RJ, Coughlan KA, Ruderman NB, Saha AK (2014) Insulin inhibits AMPK activity and phosphorylates AMPK Ser(4)(8)(5)/(4)(9)(1) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys 562:62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wilinski B, Wilinski J, Somogyi E, Piotrowska J, Opoka W (2013) Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol Rep 65:737–742

    Article  CAS  PubMed  Google Scholar 

  156. Decleves AE, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, Le TP, Nortier JL, Farquhar MG, Naviaux RK et al (2014) Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int 85:611–623

    Article  CAS  PubMed  Google Scholar 

  157. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285:37503–37512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L et al (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118:1645–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lee HJ, Feliers D, Mariappan MM, Sataranatarajan K, Choudhury GG, Gorin Y, Kasinath BS (2015) Tadalafil integrates nitric oxide-hydrogen sulfide signaling to inhibit high glucose-induced matrix protein synthesis in podocytes. J Biol Chem 290:12014–12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Scheele W, Diamond S, Gale J, Clerin V, Tamimi N, Le V, Walley R, Grover-Paez F, Perros-Huguet C, Rolph T et al (2016) Phosphodiesterase type 5 inhibition reduces albuminuria in subjects with overt diabetic nephropathy. J Am Soc Nephrol 27:3459–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kundu S, Pushpakumar S, Sen U (2015) MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide 46:172–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shevalye H, Maksimchyk Y, Watcho P, Obrosova IG (2010) Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease. Biochim Biophys Acta 1802:1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, Fanti P, Szyndralewiez C, Barnes JL, Block K et al (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308:F1276–F1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F et al (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25:1237–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sedeek M, Gutsol A, Montezano AC, Burger D, Nguyen Dinh Cat A, Kennedy CR, Burns KD, Cooper ME, Jandeleit-Dahm K, Page P et al (2013) Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond) 124:191–202

    Article  CAS  Google Scholar 

  166. Thallas-Bonke V, Jha JC, Gray SP, Barit D, Haller H, Schmidt HH, Coughlan MT, Cooper ME, Forbes JM, Jandeleit-Dahm KA (2014) Nox-4 deletion reduces oxidative stress and injury by PKC-alpha-associated mechanisms in diabetic nephropathy. Physiol Rep 2:12192

    Article  CAS  Google Scholar 

  167. Lee HJ, Lee DY, Mariappan MM, Feliers D, Ghosh-Choudhury G, Abboud HE, Gorin Y, Kasinath BS (2017) Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. J Biol Chem 292:5665–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tesch GH (2017) Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond) 131:2183–2199

    Article  CAS  Google Scholar 

  169. Nayak BK, Shanmugasundaram K, Friedrichs WE, Cavaglierii RC, Patel M, Barnes J, Block K (2016) HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes 65:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. van den Born JC, Frenay AR, Bakker SJ, Pasch A, Hillebrands JL, Lambers Heerspink HJ, van Goor H (2016) High urinary sulfate concentration is associated with reduced risk of renal disease progression in type 2 diabetes. Nitric Oxide 55:18–24

    Article  PubMed  CAS  Google Scholar 

  171. Shen X, Carlstrom M, Borniquel S, Jadert C, Kevil CG, Lundberg JO (2013) Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 60:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. van den Born JC, Frenay AS, Koning AM, Bachtler M, Riphagen IJ, Minovic I, Feelisch M, Dekker MM, Bulthuis MLC, Gansevoort RT et al (2019) Urinary excretion of sulfur metabolites and risk of cardiovascular events and all-cause mortality in the general population. Antioxid Redox Signal 30:1999–2010

    Article  PubMed  CAS  Google Scholar 

  173. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. D'Araio E, Shaw N, Millward A, Demaine A, Whiteman M, Hodgkinson A (2014) Hydrogen sulfide induces heme oxygenase-1 in human kidney cells. Acta Diabetol 51:155–157

    Article  CAS  PubMed  Google Scholar 

  175. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S et al (2014) Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  CAS  Google Scholar 

  176. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    Article  PubMed  Google Scholar 

  177. Egan BM, Li J, Hutchison FN, Ferdinand KC (2014) Hypertension in the United States, 1999 to 2012: progress toward Healthy People 2020 goals. Circulation 130:1692–1699

    Article  PubMed  PubMed Central  Google Scholar 

  178. Group SR, Wright JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116

    Article  CAS  Google Scholar 

  179. Dugbartey GJ (2017b) H2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide 64:52–60

    Article  PubMed  CAS  Google Scholar 

  180. Hsu CN, Tain YL (2018) Hydrogen sulfide in hypertension and kidney disease of developmental origins. Int J Mol Sci 19:1438

    Article  PubMed Central  CAS  Google Scholar 

  181. van Goor H, van den Born JC, Hillebrands JL, Joles JA (2016) Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens 25:107–113

    Article  PubMed  CAS  Google Scholar 

  182. Szijarto IA, Marko L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A et al (2018) Cystathionine gamma-lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension 71:1210–1217

    Article  CAS  PubMed  Google Scholar 

  183. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, Pei YP, Abdullah NA, Johns EJ (2014) Hydrogen sulphide and tempol treatments improve the blood pressure and renal excretory responses in spontaneously hypertensive rats. Ren Fail 36:598–605

    Article  CAS  PubMed  Google Scholar 

  185. Huang P, Chen S, Wang Y, Liu J, Yao Q, Huang Y, Li H, Zhu M, Wang S, Li L et al (2015) Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats. Nitric Oxide 46:192–203

    Article  CAS  PubMed  Google Scholar 

  186. d'Emmanuele di Villa Bianca R, Mitidieri E, Donnarumma E, Tramontano T, Brancaleone V, Cirino G, Bucci M, Sorrentino R (2015) Hydrogen sulfide is involved in dexamethasone-induced hypertension in rat. Nitric Oxide 46:80–86

    Article  CAS  PubMed  Google Scholar 

  187. Liu SY, Duan XC, Jin S, Teng X, Xiao L, Xue HM, Wu YM (2017) Hydrogen sulfide improves myocardial remodeling via downregulated angiotensin/AT1R pathway in renovascular hypertensive rats. Am J Hypertens 30:67–74

    Article  CAS  PubMed  Google Scholar 

  188. Al-Magableh MR, Kemp-Harper BK, Hart JL (2015) Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res 38:13–20

    Article  CAS  PubMed  Google Scholar 

  189. Snijder PM, Frenay AR, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, van den Berg E, Bos EM, Hillebrands JL, Navis G et al (2014) Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide 42:87–98

    Article  CAS  PubMed  Google Scholar 

  190. Kohn C, Dubrovska G, Huang Y, Gollasch M (2012a) Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8:81–86

    PubMed  PubMed Central  Google Scholar 

  191. Kohn C, Schleifenbaum J, Szijarto IA, Marko L, Dubrovska G, Huang Y, Gollasch M (2012b) Differential effects of cystathionine-gamma-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS One 7:e41951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Testai L, D'Antongiovanni V, Piano I, Martelli A, Citi V, Duranti E, Virdis A, Blandizzi C, Gargini C, Breschi MC et al (2015) Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide 47:25–33

    Article  CAS  PubMed  Google Scholar 

  193. Hernandez-Diaz S, Toh S, Cnattingius S (2009) Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ 338:b2255

    Article  PubMed  PubMed Central  Google Scholar 

  194. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, Olovsson M, Brennecke SP, Stepan H, Allegranza D et al (2016) Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med 374:13–22

    Article  CAS  PubMed  Google Scholar 

  196. Covarrubias AE, Lecarpentier E, Lo A, Salahuddin S, Gray KJ, Karumanchi SA, Zsengeller ZK (2019) AP39, a modulator of mitochondrial bioenergetics, reduces antiangiogenic response and oxidative stress in hypoxia-exposed trophoblasts: relevance for preeclampsia pathogenesis. Am J Pathol 189:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Holwerda KM, Weedon-Fekjaer MS, Staff AC, Nolte IM, van Goor H, Lely AT, Faas MM (2016) The association of single nucleotide polymorphisms of the maternal cystathionine-beta-synthase gene with early-onset preeclampsia. Pregnancy Hypertens 6:60–65

    Article  PubMed  Google Scholar 

  198. Mrozikiewicz PM, Bogacz A, Omielanczyk M, Wolski H, Bartkowiak-Wieczorek J, Grzeskowiak E, Czerny B, Drews K, Seremak-Mrozikiewicz A (2015) The importance of rs1021737 and rs482843 polymorphisms of cystathionine gamma-lyase in the etiology of preeclampsia in the Caucasian population. Ginekol Pol 86:119–125

    Article  PubMed  Google Scholar 

  199. Holwerda KM, Burke SD, Faas MM, Zsengeller Z, Stillman IE, Kang PM, van Goor H, McCurley A, Jaffe IZ, Karumanchi SA et al (2014) Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J Am Soc Nephrol 25:717–725

    Article  CAS  PubMed  Google Scholar 

  200. Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, Baily J, Miller MR, Cudmore M, Hadoke PW et al (2013) Dysregulation of hydrogen sulfide producing enzyme cystathionine gamma-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 127:2514–2522

    Article  CAS  PubMed  Google Scholar 

  201. Hu TX, Wang G, Guo XJ, Sun QQ, He P, Gu H, Huang Y, Gao L, Ni X (2016) MiR 20a,-20b and -200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta 39:101–110

    Article  PubMed  CAS  Google Scholar 

  202. Hu TX, Guo X, Wang G, Gao L, He P, Xia Y, Gu H, Ni X (2017) MiR133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta 52:33–40

    Article  CAS  PubMed  Google Scholar 

  203. Turbeville HR, Sasser JM (2020) Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Renal Physiol 318:F1315–F1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373:1119–1132

    Article  CAS  PubMed  Google Scholar 

  205. Akbari M, Sogutdelen E, Juriasingani S, Sener A (2019) Hydrogen sulfide: emerging role in bladder, kidney, and prostate malignancies. Oxid Med Cell Longev 2019:2360945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Shackelford RE, Abdulsattar J, Wei EX, Cotelingam J, Coppola D, Herrera GA (2017) Increased nicotinamide phosphoribosyltransferase and cystathionine-beta-synthase in renal oncocytomas, renal urothelial carcinoma, and renal clear cell carcinoma. Anticancer Res 37:3423–3427

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Breza J Jr, Soltysova A, Hudecova S, Penesova A, Szadvari I, Babula P, Chovancova B, Lencesova L, Pos O, Breza J et al (2018) Endogenous H2S producing enzymes are involved in apoptosis induction in clear cell renal cell carcinoma. BMC Cancer 18:591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Hodes RJ, Sierra F, Austad SN, Epel E, Neigh GN, Erlandson KM, Schafer MJ, LeBrasseur NK, Wiley C, Campisi J et al (2016) Disease drivers of aging. Ann N Y Acad Sci 1386:45–68

    Article  PubMed  PubMed Central  Google Scholar 

  209. Eriksen BO, Palsson R, Ebert N, Melsom T, van der Giet M, Gudnason V, Indridasson OS, Inker LA, Jenssen TG, Levey AS et al (2020) GFR in healthy aging: an individual participant data meta-analysis of iohexol clearance in European population-based cohorts. J Am Soc Nephrol 31:1602–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33:278–285

    Article  CAS  PubMed  Google Scholar 

  211. Sataranatarajan K, Feliers D, Mariappan MM, Lee HJ, Lee MJ, Day RT, Yalamanchili HB, Choudhury GG, Barnes JL, Van Remmen H et al (2012) Molecular events in matrix protein metabolism in the aging kidney. Aging Cell 11:1065–1073

    Article  CAS  PubMed  Google Scholar 

  212. Lee HJ, Gonzalez O, Dick EJ, Donati A, Feliers D, Choudhury GG, Ross C, Venkatachalam M, Tardif SD, Kasinath BS (2019) Marmoset as a model to study kidney changes associated With aging. J Gerontol A Biol Sci Med Sci 74:315–324

    Article  CAS  PubMed  Google Scholar 

  213. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Huang Q, Ning Y, Liu D, Zhang Y, Li D, Zhang Y, Yin Z, Fu B, Cai G, Sun X et al (2018b) A young blood environment decreases aging of senile mice kidneys. J Gerontol A Biol Sci Med Sci 73:421–428

    Article  PubMed  CAS  Google Scholar 

  215. Yoshida S, Yamahara K, Kume S, Koya D, Yasuda-Yamahara M, Takeda N, Osawa N, Chin-Kanasaki M, Adachi Y, Nagao K et al (2018) Role of dietary amino acid balance in diet restriction-mediated lifespan extension, renoprotection, and muscle weakness in aged mice. Aging Cell 17:e12796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Komninou D, Malloy VL, Zimmerman JA, Sinha R, Richie JP Jr (2020) Methionine restriction delays aging-related urogenital diseases in male Fischer 344 rats. Geroscience 42:287–297

    Article  CAS  PubMed  Google Scholar 

  217. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y et al (2018) Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell 173:74–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Choudhury D, Levi M (2011) Kidney aging--inevitable or preventable? Nat Rev Nephrol 7:706–717

    Article  CAS  PubMed  Google Scholar 

  219. Hou CL, Wang MJ, Sun C, Huang Y, Jin S, Mu XP, Chen Y, Zhu YC (2016) Protective effects of hydrogen sulfide in the ageing kidney. Oxid Med Cell Longev 2016:7570489

    PubMed  PubMed Central  Google Scholar 

  220. Wu W, Hou CL, Mu XP, Sun C, Zhu YC, Wang MJ, Lv QZ (2017) H2S donor NaHS changes the production of endogenous H2S and NO in D-galactose-induced accelerated ageing. Oxid Med Cell Longev 2017:5707830

    PubMed  PubMed Central  Google Scholar 

  221. Lee HJ, Feliers D, Barnes JL, Oh S, Choudhury GG, Diaz V, Galvan V, Strong R, Nelson J, Salmon A et al (2018) Hydrogen sulfide ameliorates aging-associated changes in the kidney. Geroscience 40:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mariappan MM, Feliers D, Mummidi S, Choudhury GG, Kasinath BS (2007) High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells. Diabetes 56:476–485

    Article  CAS  PubMed  Google Scholar 

  223. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, Caples K, Bradley L, Beaver LM, Ho E et al (2017) Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ross CN, Adams J, Gonzalez O, Dick E, Giavedoni L, Hodara VL, Phillips K, Rigodanzo AD, Kasinath B, Tardif SD (2019) Cross-sectional comparison of health-span phenotypes in young versus geriatric marmosets. Am J Primatol 81:e22952

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kuro-o M (2013) Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 9:650–660

    Article  CAS  PubMed  Google Scholar 

  230. Drew DA, Katz R, Kritchevsky S, Ix J, Shlipak M, Gutierrez OM, Newman A, Hoofnagle A, Fried L, Semba RD et al (2017) Association between soluble klotho and change in kidney function: the health aging and body composition study. J Am Soc Nephrol 28:1859–1866

    Article  PubMed  PubMed Central  Google Scholar 

  231. Pereira RMR, Freitas TQ, Franco AS, Takayama L, Caparbo VF, Domiciano DS, Machado LG, Figueiredo CP, Menezes PR, Onuchic LF et al (2020) KLOTHO polymorphisms and age-related outcomes in community-dwelling older subjects: The Sao Paulo Ageing & Health (SPAH) Study. Sci Rep 10:8574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mitani H, Ishizaka N, Aizawa T, Ohno M, Usui S, Suzuki T, Amaki T, Mori I, Nakamura Y, Sato M et al (2002) In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 39:838–843

    Article  CAS  PubMed  Google Scholar 

  233. Laggner H, Hermann M, Esterbauer H, Muellner MK, Exner M, Gmeiner BM, Kapiotis S (2007) The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens 25:2100–2104

    Article  CAS  PubMed  Google Scholar 

  234. Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH, Liu LS, Jiang ZS (2013b) Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol 33:1104–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  236. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  237. Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D (2020) Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 34:101564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Szabo C (2016) Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15:185–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author wishes to thank high school and college students, physicians-in-training, post-doctoral fellows, and collaborators without whose contributions work done in his laboratory and cited in this article would not have been possible. He also gratefully acknowledges funding support from the NIH, Veterans Research Administration Service, National Kidney Foundation, American Diabetes Association, and the Juvenile Diabetes Research Foundation over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balakuntalam S. Kasinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasinath, B.S., Lee, H.J. (2021). Hydrogen Sulfide and the Kidney. In: Zhu, YC. (eds) Advances in Hydrogen Sulfide Biology. Advances in Experimental Medicine and Biology, vol 1315. Springer, Singapore. https://doi.org/10.1007/978-981-16-0991-6_2

Download citation

Publish with us

Policies and ethics