Skip to main content

Abstract

The laboratory mouse (Mus musculus) has been employed in biomedical research for its amenability to genetic modification. The genetic modifications have enabled the development of new mouse strains for studying diverse diseases. This chapter will provide information on mouse genetics, their nomenclature, and different strategies of breeding. This chapter will also describe the genetic monitoring program and quality control program associated with it. For ease of learning, we have classified the chapter into four broad categories—selection aids, selection methods, mating aids, and mating methods to facilitate a deeper understanding of mouse genetics and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GEM:

Genetically engineered mice

MGI:

Mouse genome informatics

MPD:

Mouse phenome database

NCBI:

National center for biotechnology information

PCR:

Polymerase chain reaction

SNP:

Single-nucleotide polymorphism

References

  1. Keeler CE (2014) The laboratory mouse: its origin, heredity, and culture. Harvard University Press

    Google Scholar 

  2. Eisen EJ (2005) The mouse in animal genetics and breeding research. World Scientific

    Google Scholar 

  3. Morse HC (1981) The laboratory mouse-a historical perspective. Mouse Biomed Res:1–16

    Google Scholar 

  4. Russell ES (1985) A history of mouse genetics. Annu Rev Genet 19(1):1–29

    Article  CAS  Google Scholar 

  5. Beckers J, Wurst W, De Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10(6):371–380

    Article  CAS  Google Scholar 

  6. Ayadi A, Ferrand G, Cruz IGD, Warot X (2011) Mouse breeding and colony management. Curr Protocol Mouse Biol 1(1):239–264

    Google Scholar 

  7. Petkova SB, Yuan R, Tsaih SW, Schott W, Roopenian DC, Paigen B (2008) Genetic influence on immune phenotype revealed strain-specific variations in peripheral blood lineages. Physiol Genomics 34(3):304–314

    Article  CAS  Google Scholar 

  8. Cheah YC, Nadeau JH, Pugh S, Paigen B (1994) New murine polymorphisms detected by random amplified polymorphic DNA (RAPD) PCR and mapped by use of recombinant inbred strains. Mamm Genome 5(12):762–767

    Article  CAS  Google Scholar 

  9. Hong Y, Chuah A (2003) A format for databasing and comparison of AFLP fingerprint profiles. BMC Bioinformat 4(1):7

    Article  Google Scholar 

  10. Petkov PM, Cassell MA, Sargent EE, Donnelly CJ, Robinson P, Crew V, Wiles MV (2004) Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83(5):902–911

    Article  CAS  Google Scholar 

  11. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8(1):58–69

    Article  CAS  Google Scholar 

  12. Pirie E, Ray S, Pan C, Fu W, Powers AF, Polikoff D, Crooke RM (2018) Mouse genome-wide association studies and systems genetics uncover the genetic architecture associated with hepatic pharmacokinetic and pharmacodynamic properties of a constrained ethyl antisense oligonucleotide targeting Malat1. PLoS Genet 14(10):e1007732

    Article  Google Scholar 

  13. Lusis AJ et al (2016) The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J Lipid Res 57(6):925–942. https://doi.org/10.1194/jlr.R066944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. JAMA 299(11):1335–1344

    Article  CAS  Google Scholar 

  15. Almeida OAC et al (2019) Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics 20:449

    Article  Google Scholar 

  16. Lambert R (2009) Breeding strategies for maintaining colonies of laboratory mice. TJ Laboratory

    Google Scholar 

  17. Festing MFW (1979) Inbred strains in biomedical research. Macmillan International Higher Education

    Google Scholar 

  18. Hedrich HJ (2020) Taxonomy and stocks and strains. In: The laboratory rat. Academic Press, pp 47–75

    Google Scholar 

  19. Festing MFW (1987) Introduction to laboratory animal genetics. UFAW handbook on the care and management of laboratory animals/edited by Trevor B. Poole; editorial assistant, Ruth Robinson

    Google Scholar 

  20. Rogner UC, Avner P (2003) Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 3(3):243–252

    Article  CAS  Google Scholar 

  21. Landa V, Zídek V, Pravenec M (2010) Generation of rat “supersonic” congenic/conplastic strains using superovulation and embryo transfer. In: Rat genomics. Humana Press, pp. 267–275

    Google Scholar 

  22. Festing M, Staats J (1973) Standardized nomenclature for inbred strains of rats: fourth listing. Transplantation 16(3):221–245

    Article  Google Scholar 

  23. Ackert-Bicknell CL, Rosen CJ (2016) Passenger gene mutations: unwanted guests in genetically modified mice. J Bone Miner Res 31(2):270–273

    Article  Google Scholar 

  24. Davisson MT, Bergstrom DE, Reinholdt LG, Donahue LR (2012) Discovery genetics: the history and future of spontaneous mutation research. Curr Protocol Mouse Biol 2(2):103–118

    Article  Google Scholar 

  25. Rappaport A, Johnson L (2014) Genetically engineered knock-in and conditional knock-in mouse models of cancer. Cold Spring Harb Protoc (9):pdb-top069799

    Google Scholar 

  26. Allen E (1922) The oestrous cycle in the mouse. Am J Anat 30(3):297–371

    Article  Google Scholar 

  27. Heyne GW et al (2015) A simple and reliable method for early pregnancy detection in inbred mice. J Am Assoc Lab Anim Sci 54(4):368–371

    PubMed  PubMed Central  Google Scholar 

  28. Berry ML, Linder CC (2007) Breeding systems: considerations, genetic fundamentals, genetic background, and strain types. In: The mouse in biomedical research. Academic Press, pp 53–78

    Google Scholar 

  29. Bind RH et al (2013) The role of pheromonal responses in rodent behavior: future directions for the development of laboratory protocols. J Am Assoc Lab Anim Sci 52(2):124–129

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Green MA, Bass S, Spear BT (2009) A device for the simple and rapid transcervical transfer of mouse embryos eliminates the need for surgery and potential post-operative complications. BioTechniques 47(5):919–924

    Article  CAS  Google Scholar 

  31. Stone BJ, Steele KH, Fath-Goodin A (2015) A rapid and effective nonsurgical artificial insemination protocol using the NSET™ device for sperm transfer in mice without anesthesia. Transgenic Res 24(4):775–781

    Article  CAS  Google Scholar 

  32. Strobel MC, Reinholdt LG, Malcolm RD, Pritchett-Corning K (2015) Genetic monitoring of laboratory mice and rats. In: Laboratory animal medicine, pp. 1403–1416

    Google Scholar 

  33. Benavides F, Rülicke T, Prins JB, Bussell J, Scavizzi F, Cinelli P, Wedekind D (2020) Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab Anim 54(2):135–148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumal Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panneer, S.K., Arindkar, S.K., Nagarajan, P. (2021). Mouse Genetics and Breeding. In: Nagarajan, P., Gudde, R., Srinivasan, R. (eds) Essentials of Laboratory Animal Science: Principles and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-16-0987-9_15

Download citation

Publish with us

Policies and ethics