Skip to main content

Effect of LTE Handover on TCP Performance Over Optical Networks

  • Conference paper
  • First Online:
Computer Communication, Networking and IoT

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 197))

Abstract

High-speed mobile networks have rapidly evolved over the last years. The unique environment they operate, however, sets new challenges for the transmission control protocol (TCP). In this paper, we study the impact of long-term evolution (LTE) handover on TCP performance in a wide range of networks settings including different handover algorithms, random channel errors and support of error correction at lower layers. First, results indicate a severe TCP goodput reduction in most considered scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itu-T.: G.984.1 Gigabit-capable passive optical networks (GPON): General characteristics. Networks (2008)

    Google Scholar 

  2. Terada J.: Optical Network Technologies for 5G Mobile Network. In: Optical Fiber Communications Conference and Exhibition, (OFC) (2019). https://doi.org/10.1364/ofc.2019.w4h.1

  3. Jaber, M., Imran, M.A., Tafazolli, R., Tukmanov, A.: 5G backhaul challenges and emerging research directions: a survey. IEEE Access. 4, 1743–1766 (2016). https://doi.org/10.1109/ACCESS.2016.2556011

    Article  Google Scholar 

  4. Kani, J.I., Terada, J., Suzuki, K.I., Otaka, A.: Solutions for future mobile Fronthaul and access-network convergence. J. Lightwave Technol. 35(3), 527–534 (2017)

    Google Scholar 

  5. Toskala, A., Holma, H., Kolding, T., Mogensen, P., Pedersen, K., Reunanen, J.: High-Speed Downlink Packet Access. In: WCDMA for UMTS: HSPA Evolution and LTE, Fourth Edition (2008). https://doi.org/10.1002/9780470512531.ch12

  6. Anas, M., Calabrese, F.D., Östling, P.E, Pedersen, K.I., Mogensen, P.E.: Performance analysis of handover measurements and layer 3 filtering for UTRAN LTE. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC (2007). https://doi.org/10.1109/PIMRC.2007.4394671

  7. Alexandris, K., Nikaein, N., Knopp, R., Bonnet, C.: Analyzing X2 handover in LTE/LTE-A. In: 14th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt (2016). https://doi.org/10.1109/WIOPT.2016.7492906

  8. Nguyen, B., Banerjee, A., Gopalakrishnan, V., et al.: Towards understanding TCP performance on LTE/EPC mobile networks. In: All Things Cellular 2014—Proceedings of the 4th ACM Workshop on All Things Cellular: Operations, Applications, and Challenges (2014). https://doi.org/10.1145/2627585.2627594

  9. Jacobson, V.: Congestion avoidance and control. Comput. Com. Rev. 18(4), 314–329 (1988)

    Article  Google Scholar 

  10. Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks. SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

    Article  Google Scholar 

  11. Floyd S.: HighSpeed TCP for large congestion windows. RFC3649, pp. 1–34, December (2003). https://doi.org/10.17487/rfc3742

  12. Jin, C., Wei, D.X., Low, S.H.: FAST TCP: motivation, architecture, algorithms, performance. In: Proceedings of IEEE INFOCOM, vol. 4, pp. 2490–2501 (2004). https://doi.org/10.1109/INFCOM.2004.1354670

  13. Leith, D., Shorten, R.: H-TCP protocol for high-speed long-distance networks. Proc PFLDnet, Argonne, pp. 1–16 (2004). http://www.hamilton.ie/net/htcp3.pdf

  14. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: Proceedings of IEEE INFOCOM, vol. 4, pp 2514–2524 (2004). https://doi.org/10.1109/INFCOM.2004.1354672

  15. Ha, S., Rhee, I.: CUBIC : a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. Res Dev Linux kernel 42(5), 64–74 (2008). https://doi.org/10.1145/1400097.1400105

  16. Tsiknas, K., Rantos, K., Schinas, C.J., Soilemes, A.: Performance evaluation of TCP-BIAD in high-speed, long-distance networks. Computing 101(4), 319–337 (2019)

    Article  MathSciNet  Google Scholar 

  17. Tsiknas, K., Stamatelos, G.: Comparative performance evaluation of TCP variants in WiMAX (and WLANs) network configurations. J. Comput. Netw. Commun. 2012 (2012). https://doi.org/10.1155/2012/806272

  18. Alrshah, M.A., Othman, M., Ali, B., Mohd, Hanapi Z.: Comparative study of high-speed Linux TCP variants over high-BDP networks. J. Netw. Comput. Appl. 43, 44–75 (2014). https://doi.org/10.1016/j.jnca.2014.04.007

    Article  Google Scholar 

  19. Abdeljaouad, I., Rachidi, H., Fernandes, S., Karmouch, A.: Performance analysis of modern TCP Variants: a comparison of cubic, compound and new Reno. In: 25th Biennial Symposium on Communications (QBSC) (2010). https://doi.org/10.1109/BSC.2010.5472999

  20. Taruk, M., Budiman, E., Setyadi, H.J.: Comparison of TCP variants in long term evolution (LTE). In: 5th International Conference on Electrical, Electronics and Information Engineering: Smart Innovations for Bridging Future Technologies, ICEEIE (2018). https://doi.org/10.1109/ICEEIE.2017.8328776

  21. Orozco, J., Ros, D.: TCP performance over gigabit-capable passive optical networks. In: Third International Conference on Access Networks, vol. 6, pp. 264–279 (2009)

    Google Scholar 

  22. Chan, M.C., Ramjee, R.: TCP/IP performance over 3G wireless links with rate and delay variation. Wirel. Netw. 11, 81–97 (2005)

    Article  Google Scholar 

  23. Winstein, K., Sivaraman, A., Balakrishnan, H.: Stochastic forecasts achieve high throughput and low delay over cellular networks. In: 10th USENIX Symp Networked Syst Des Implement (NSDI), pp. 459–471 (2013)

    Google Scholar 

  24. Erman, J., Gopalakrishnan, V., Jana, R., Ramakrishnan, K.K.: Towards a SPDY’ier mobile web? In: Proceedings of the 9th International Conference on Emerging Networking Experiments and Technologies (CoNEXT) (2013). https://doi.org/10.1145/2535372.2535399

  25. Huang, J., et al.: An in-depth study of LTE: Effect of network protocol and application behavior on performance. Comput. Commun. Rev. (2013)

    Google Scholar 

  26. Lin, C.C., Sandrasegaran, K., Mohd Raml, H.A., Basukala, R.: Optimized performance evaluation of LTE hard handover algorithm with average RSRP constraint. Int. J. Wirel. Mob. Netw. 2(3), 1–16 (2011)

    Google Scholar 

  27. Dimou, K., Wang, M., Yang, Y., et al.: Handover within 3GPP LTE: design principles and performance. In: IEEE Vehicular Technology Conference (VTC) (2009). https://doi.org/10.1109/VETECF.2009.5378909

  28. ETSI. TS 136 331—V15.3.0—LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification. 3GPP TS 36331 version 1371 Release 13 (2018)

    Google Scholar 

  29. Sesia, S., Toufik, I., Baker, M.: LTE—The UMTS Long Term Evolution: From Theory to Practice, p. 752. Wiley, New York (2011)

    Book  Google Scholar 

  30. Hu, H., Zhang, J., Zheng, X., Yang, Y., Wu, P.: Self-configuration and self-optimization for LTE networks. IEEE Commun. Mag. 48(2), 94–100 (2010)

    Article  Google Scholar 

  31. Bǎlan, I.M., Moerman, I., Sas, B., Demeester, P.: Signalling minimizing handover parameter optimization algorithm for LTE networks. Wirel. Netw. 18(3), 295–305 (2012)

    Article  Google Scholar 

  32. ns-3 Consortium. ns-3. ns3 homepage. https://www.nsnam.org/

  33. Gupta, R., Bachmann, B., Ford, R., et al.: Ns-3-based real-time emulation of LTE testbed using LabVIEW platform for software defined networking (SDN) in CROWD project. In: ACM International Conference Proceeding Series (2015). https://doi.org/10.1145/2756509.2756516

  34. Piro, G., Baldo, N., Miozzo, M.: An LTE module for the ns-3 network simulator (2012). https://doi.org/10.4108/icst.simutools.2011.245571

  35. Ahmad, I., Kaleem, Z., Chang,K.: Block error rate and UE throughput performance evaluation using LLS and SLS in 3GPP LTE downlink. Proc. Korean Inst. Commun. Inf. Sci. Daegwallyeong-myeon, South Korea: Yongpyong Resort (2013). https://arxiv.org/abs/1810.01162

  36. Gurtov, A., Ludwig, R.: Responding to spurious timeouts in TCP. In: Proceedings of IEEE INFOCOM (2003)

    Google Scholar 

  37. Davey, R.P., Grossman, D.B., Rasztovits-Wiech, M., et al.: Long-reach passive optical networks. J. Lightwave Technol. 27(3), 273–291 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos G. Tsiknas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsiknas, K.G., Zoiros, K.E. (2021). Effect of LTE Handover on TCP Performance Over Optical Networks. In: Bhateja, V., Satapathy, S.C., Travieso-Gonzalez, C.M., Flores-Fuentes, W. (eds) Computer Communication, Networking and IoT. Lecture Notes in Networks and Systems, vol 197. Springer, Singapore. https://doi.org/10.1007/978-981-16-0980-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0980-0_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0979-4

  • Online ISBN: 978-981-16-0980-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics