Skip to main content

Inhibition of Biofilm Formation

  • Chapter
  • First Online:
Biofilm-Mediated Diseases: Causes and Controls

Abstract

Biofilm formation increases the survival chances of the microbial species. Increase in microbial cell density triggers quorum sensing and leads to colony formation. The emergence of multidrug resistance (MDR) strains with biofilm formation ability of human pathogen has limited effective antibiotic-based treatment. Hence it is immediately required to identify novel molecules for the treatment of such microbial infections forming a biofilm. Here, traditional medicine has a lot to offer in search of a novel therapeutic molecule. Researchers from the field of microbiology, phytochemistry, and pharmacognosy have screened several plant extracts and purified molecules, which have shown promising results. Here, we have covered druggable targets in a biofilm, interacting members in a biofilm, and utilize those as targets. In the subsequent part, we have discussed the phytochemicals and herbal drugs in inhibiting biofilm. It will assist in having an overview of current research progress and understanding the druggable targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham EP, Chain E (1988) An enzyme from bacteria able to destroy penicillin. Rev Infect Dis 10:677–678

    CAS  PubMed  Google Scholar 

  • Adegoke AA, Stenström TA, Okoh AI (2017) Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 8:2276

    Article  PubMed  PubMed Central  Google Scholar 

  • Albano M, Crulhas BP, Alves FCB, Pereira AFM, Andrade B, Barbosa LN, Furlanetto A, Lyra L, Rall VLM, Junior AF (2019) Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb Pathog 126:231–238. https://doi.org/10.1016/j.micpath.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  • Amalaradjou MAR, Narayanan A, Baskaran SA, Venkitanarayanan K (2010) Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J Urol 184(1):358–363

    Article  CAS  PubMed  Google Scholar 

  • Asfour HZ (2018) Anti-Quorum Sensing Natural Compounds. J Microsc Ultrastruct 6(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandara H, Lam O, Watt R, Jin L, Samaranayake L (2010) Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 59(10):1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Beachey EH, Giampapa CS, Abraham SN (1988) Bacterial adherence. Adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. Am Rev Respir Dis 138(6 Pt 2):S45–S48. https://doi.org/10.1164/ajrccm/138.6_Pt_2.S45

    Article  CAS  PubMed  Google Scholar 

  • Bielen K, s Jongers B, Boddaert J, Raju TK, Lammens C, Malhotra-Kumar S, Jorens PG, Goossens H, Kumar-Singh S (2017) Biofilm-Induced Type 2 Innate Immunity in a Cystic Fibrosis Model of Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:274. https://doi.org/10.3389/fcimb.2017.00274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Jensen P, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Høiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology (Reading, England) 151(Pt 12):3873–3880. https://doi.org/10.1099/mic.0.27955-0

    Article  CAS  Google Scholar 

  • Bogino PC, de las M, Oliva M, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 30:15838–15859

    Article  CAS  Google Scholar 

  • Boles BR, Horswill AR (2008) Agr-mediated dispersal of staphylococcus aureus biofilms. PLoS Pathog 4:e1000052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonnichsen L, Bygvraa Svenningsen N, Rybtke M, de Bruijn I, Raaijmakers JM, Tolker-Nielsen T et al (2015) Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology 161:2289–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR (2013) A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis. Mol Microbiol 90(1):6–21. https://doi.org/10.1111/mmi.12342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo J, García-Contreras R, Velázquez-Guadarrama N, Soto-Hernández M, Martínez-Vázquez M (2013) Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Arch Med Res 44:488–494

    Article  Google Scholar 

  • Cavalcante TTA, Sá Firmino N, Tajra FS, de Andrade CR, Costa RA (2014) Plant lectins as alternative tools against bacterial biofilms. Afr J Microbiol Res 8:2555–5264

    Article  CAS  Google Scholar 

  • Chippaux C, Puchelle E (1994) Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 62(10):4481–4487

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong YM, Yin WF, Ho CY, Mustafa MR, Hadi AH, Awang K, Narrima P, Koh CL, Appleton DR, Chan KG (2011) Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. J Nat Prod 74(10):2261–2264

    Article  CAS  PubMed  Google Scholar 

  • Choo JH, Rukayadi Y, Hwang JK (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641

    CAS  PubMed  Google Scholar 

  • Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Cossart P, Jonquières R (2000) Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc Natl Acad Sci U S A 97(10):5013–5015. https://doi.org/10.1073/pnas.97.10.5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1229

    Article  CAS  PubMed  Google Scholar 

  • Cucarella C, Tormo MA, Ubeda C, Trotonda MP, Monzón M, Peris C, Amorena B, Lasa Í, Penadés JR (2004) Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72(4):2177–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha WR, de Matos GX, Souza MG, Tozatti MG, Andrade e Silva ML, Martins CH, da Silva R, Da Silva Filho AA (2010) Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives. Pharm Biol 48(2):166–169. https://doi.org/10.3109/13880200903062648

    Article  CAS  PubMed  Google Scholar 

  • Das T, Sehar S, Manefield M (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5(6):778–786

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    Article  CAS  PubMed  Google Scholar 

  • Delaquis PJ, Caldwell DE, Lawrence JR, McCurdy AR (1989) Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb Ecol 18:199–210

    Article  CAS  PubMed  Google Scholar 

  • Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbio 4(2):274–288. https://doi.org/10.3934/microbiol.2018.2.274

    Article  CAS  Google Scholar 

  • Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8(6):1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Dominiak DM, Nielsen JL, Nielsen PH (2011) Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ Microbiol 13(3):710–721

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109

    CAS  PubMed  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang J-L (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5(13):1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Duanis-Assaf D, Duanis-Assaf T, Zeng G, Meyer RL, Reches M, Steinberg D, Shemesh M (2018) Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Sci Rep 8(1):9350. https://doi.org/10.1038/s41598-018-27548-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberl L (1999) N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22(4):493–506

    Article  CAS  PubMed  Google Scholar 

  • Emody L, Kerenyi M, Nagy G (2003) Virulence factors of uropathogenic Escherichia coli. Int J Antimicrob Agents 22:29–33

    Article  PubMed  CAS  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32(3):773–781. https://doi.org/10.1016/0092-8674(83)90063-6

    Article  CAS  PubMed  Google Scholar 

  • Erskine E, MacPhee CE, Stanley-Wall NR (2018) Functional amyloid and other protein fibers in the biofilm matrix. J Mol Biol 430(20):3642–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrela AB, Heck MG, Abraham WR (2009) Novel approaches to control biofilm infections. Curr Med Chem 16(12):1512–1530. https://doi.org/10.2174/092986709787909640. PMID: 19355904

    Article  CAS  PubMed  Google Scholar 

  • Faleiro ML (2011) The mode of antibacterial action of essential oils. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. World Scientific, Singapore, pp 1143–1156

    Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947. https://doi.org/10.1128/jb.00858-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563

    Article  CAS  PubMed  Google Scholar 

  • Fu B, Wu Q, Dang M, Bai D, Guo Q, Shen L, Duan K (2017) Inhibition of Pseudomonas aeruginosa biofilm formation by traditional Chinese medicinal herb Herba patriniae. Biomed Res Int 2017:9584703

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-Del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14(5):100

    Article  PubMed Central  CAS  Google Scholar 

  • Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O’Gara JP, Potts JR, Foster TJ (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192(21):5663–5673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Jayaraman N, Chatterji D (2020) Small-molecule inhibition of bacterial biofilm. ACS Omega 5(7):3108–3115. https://doi.org/10.1021/acsomega.9b03695. PMID: 32118127; PMCID: PMC7045314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giltner CL, Van Schaik EJ, Audette GF, Kao D, Hodges RS, Hassett DJ, Irvin RT (2006) The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol Microbiol 59(4):1083–1096

    Article  CAS  PubMed  Google Scholar 

  • Giriraju A, Yunus G (2013) Assessment of antimicrobial potential of 10% ginger extract against Streptococcus mutans, Candida albicans, and Enterococcus faecalis: an in vitro study. Indian J Dent Res 24(4):397

    Article  PubMed  Google Scholar 

  • Girish VM, Liang H, Aguilan JT, Nosanchuk JD, Friedman JM, Nacharaju P (2019) Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine 20:102009. https://doi.org/10.1016/j.nano.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  • Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75:815–826

    Article  CAS  PubMed  Google Scholar 

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Déziel E et al (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192:2973–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves O, Pereira R, Gonçalves F, Mendo S, Coimbra MA, Rocha SM (2011) Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. Mutat Res 723(1):18–25. https://doi.org/10.1016/j.mrgentox.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  • Gopu V, Kothandapani S, Shetty PH (2015) Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog 79:61–69. https://doi.org/10.1016/j.micpath.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Cramton SE, Götz F, Peschel A (2001) Key role of teichoic acid net charge in staphylococcus aureus colonization of artificial surfaces. Infect Immun 69(5):3423–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37(6):849–871

    Article  CAS  PubMed  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Harimawan A, Ting Y-P (2016) Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion. Colloids Surf B: Biointerfaces 146:459–467

    Article  CAS  PubMed  Google Scholar 

  • Harjai K, Kumar R, Singh S (2010) Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 58(2):161–168. https://doi.org/10.1111/j.1574-695X.2009.00614.x

    Article  CAS  PubMed  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156(4):1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Houston P, Rowe SE, Pozzi C, Waters EM, O’Gara JP (2011) Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 79(3):1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology (Reading, England) 147(Pt 9):2517–2528. https://doi.org/10.1099/00221287-147-9-2517

    Article  CAS  Google Scholar 

  • Husain FM, Ahmad I, Asif M, Tahseen Q (2013) Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci 38(5):835–844

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Parida S, Mangwani N, Dash HR, Das S (2013) Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. Ann Microbiol 63(4):1553–1562

    Article  CAS  Google Scholar 

  • Kalia M, Yadav VK, Singh PK, Sharma D, Narvi SS, Agarwal V (2018) Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life Sci 199:96–103. https://doi.org/10.1016/j.lfs.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  • Kang JE, Han JW, Jeon BJ, Kim BS (2016) Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiol Res 184:32–41

    Article  CAS  PubMed  Google Scholar 

  • Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28:668–681

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama M, Kobayashi Y, Ichikawa H, Mizuno A, Miyachi Y, Matsunaga K, Kawashima M (2005) A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 38(3):207–213. https://doi.org/10.1016/j.jdermsci.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann GF, Park J, Janda KD (2008) Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 8:719–724

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Arora DS, Kalia N, Kaur M (2020) Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Mol Biol Rep 47(4):2901–2911. https://doi.org/10.1007/s11033-020-05394-7

    Article  CAS  PubMed  Google Scholar 

  • Kean R, Rajendran R, Haggarty J, Townsend EM, Short B, Burgess KE, Lang S, Millington O, Mackay WG, Williams C, Ramage G (2017) Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front Microbiol 8:258. https://doi.org/10.3389/fmicb.2017.00258

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S-H, Shin D-S, Oh M-N, Chung S-C, Lee J-S, Oh K-B (2004) Inhibition of the bacterial surface protein anchoring transpeptidase sortase by isoquinoline alkaloids. Biosci Biotechnol Biochem 68(2):421–424

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Liu Y, Benhamou RI, Sanchez H, Simón-Soro Á, Li Y, Hwang G, Fridman M, Andes DR, Koo H (2018) Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm. ISME J 12(6):1427–1442. https://doi.org/10.1038/s41396-018-0113-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71(2):797–803. https://doi.org/10.1128/AEM.71.2.797-803.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Iwano M (2012) BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 85(1):51–66

    Article  CAS  PubMed  Google Scholar 

  • Kohler T, Weidenmaier C, Peschel A (2009) Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191(13):4482–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo H, Pearson SK, Scott-Anne K, Abranches J, Cury JA, Rosalen PL, Park YK, Marquis RE, Bowen WH (2002) Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral Microbiol Immunol 17(6):337–343. https://doi.org/10.1034/j.1399-302x.2002.170602.x

    Article  CAS  PubMed  Google Scholar 

  • Kurekci C, Padmanabha J, Bishop-Hurley SL, Hassan E, Al Jassim RA, McSweeney CS (2013) Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int J Food Microbiol 166(3):450–457. https://doi.org/10.1016/j.ijfoodmicro.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  • Kuźma Ł, Rózalski M, Walencka E, Rózalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14(1):31–35. https://doi.org/10.1016/j.phymed.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  • Kwakman PHS, te Velde AA, Grauls CMJEV, van Deventer SJH, Zaat SAJ (2006) Treatment and prevention of staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother 50:3977–3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lade H, Paul D, Kweon JH (2014) N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. Biomed Res Int 2014:162584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO (2001) Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 32:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Lazar V (2011) Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17(6):280–285

    Article  PubMed  Google Scholar 

  • Lee H, Lee DG (2015) Mode of action of bioactive phytochemicals, plant secondary metabolites, possessing antimicrobial properties. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. World Scientific, Singapore

    Google Scholar 

  • Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J (2011) Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79(12):4819–4827. https://doi.org/10.1128/IAI.05580-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim YG, Cho HS, Ryu SY, Cho MH, Lee J (2014a) Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine 21(8–9):1037–1042. https://doi.org/10.1016/j.phymed.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Kim Y-G, Ryu SY, Cho MH, Lee J (2014b) Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int J Food Microbiol 174:47–55

    Article  CAS  PubMed  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol 175(11):7512–7518

    Article  CAS  PubMed  Google Scholar 

  • Lin MH, Shu JC, Lin LP, Yu Chong K, Cheng YW, Du JF, Liu S-T (2015) Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis. PLoS One 10(4):e0124216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Niu H, Zhang W, Mu H, Sun C, Duan J (2015) Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Lett Appl Microbiol 60(5):421–430. https://doi.org/10.1111/lam.12401

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Qiu W, Zhang K, Zhou X, Ren B, He J, Xu X, Cheng L, Li M (2017) Nicotine enhances interspecies relationship between Streptococcus mutans and Candida albicans. Biomed Res Int 2017:7953920. https://doi.org/10.1155/2017/7953920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long H, Miller SF, Strauss C, Zhao C, Cheng L, Ye Z, Griffin K, Te R, Lee H, Chen CC, Lynch M (2016) Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc Natl Acad Sci U S A 113:E2498–E2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14:11. https://doi.org/10.1186/s13020-019-0232-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas REB, Wheeler D, Hettige H (1993) Economic development, environmental regulation, and the international migration of toxic industrial pollution, 1960–1988. Washington, DC (1818 H, NW, Washington 20433): Office of the Vice President, Development Economics, World Bank

    Google Scholar 

  • Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ (2006) Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188(23):8213–8221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Memariani H, Memariani M, Ghasemian A (2019) An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 35(9):143. https://doi.org/10.1007/s11274-019-2719-5

    Article  PubMed  Google Scholar 

  • Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez JA, Foster TJ, Penadés JR, Lasa I (2009) Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 191(3):832–843

    Article  CAS  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  • Morgan R, Kohn S, Hwang S-H, Hassett DJ, Sauer K (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser H, Wu C, Wang HZ, Høiby N, Song ZJ (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7

    Article  CAS  PubMed  Google Scholar 

  • Moshe M, Lellouche J, Banin E (2011) Curcumin: a natural antibiofilm agent. Sci Technol Against Microb Pathog 2011:89–93

    Article  Google Scholar 

  • Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12:789–796

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy B, Shanmugam G (2020) Analysis of flavonoid content, antioxidant, antimicrobial and antibiofilm activity of in vitro hairy root extract of radish (Raphanus sativus L.). Plant Cell Tiss Organ Cult (PCTOC) 140(3):619–633

    Article  CAS  Google Scholar 

  • Nadaf NH, Parulekar RS, Patil RS, Gade TK, Momin AA, Waghmare SR, Dhanavade MJ, Arvindekar AU, Sonawane KD (2018) Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. J Ethnopharmacol 222:121–132. https://doi.org/10.1016/j.jep.2018.04.031

    Article  CAS  PubMed  Google Scholar 

  • Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70(12):6951–6956. https://doi.org/10.1128/AEM.70.12.6951-6956.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J, Sun F, Feng W, Sun Y, Qiu X, Xiong L, Liu Y, Chen Y (2016) Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 120(4):966–974

    Article  CAS  PubMed  Google Scholar 

  • Ouyang P, He X, Yuan ZW, Yin ZQ, Fu H, Lin J, He C, Liang X, Lv C, Shu G, Yuan ZX, Song X, Li L, Yin L (2018) Erianin against Staphylococcus aureus infection via inhibiting Sortase A. Toxins (Basel) 10(10):385. https://doi.org/10.3390/toxins10100385

    Article  CAS  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588. https://doi.org/10.1038/nrmicro.2016.89. PMID: 27510864; PMCID: PMC5056591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen J (2016) Heap leaching as a key technology for recovery of values from low-grade ores—a brief overview. Hydrometallurgy 165:206–212

    Article  CAS  Google Scholar 

  • Petrova OE, Cherny KE, Sauer K (2015) The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J Bacteriol 197:174–187

    Article  PubMed  CAS  Google Scholar 

  • Pierce CG, Vila T, Romo JA, Montelongo-Jauregui D, Wall G, Ramasubramanian A, Lopez-Ribot JL (2017) The Candida albicans biofilm matrix: composition, structure and function. J Fungi 3(1):14

    Article  CAS  Google Scholar 

  • Prakash B, Veeregowda B, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 2003:1299–1307

    Google Scholar 

  • Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109:309–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumari J, Meena H, Gangatharan M, Busi S (2017) Green synthesis of anisotropic gold nanoparticles using hordenine and their antibiofilm efficacy against Pseudomonas aeruginosa. IET Nanobiotechnol 11(8):987–994. https://doi.org/10.1049/iet-nbt.2017.0069

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasch M, Kastbjerg VG, Bruhn JB, Dalsgaard I, Givskov M, Gram L (2007) Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor. Dis Aquat Org 78(2):105–113. https://doi.org/10.3354/dao01865

    Article  Google Scholar 

  • Reiter KC, Villa B, Paim TGDS, de Oliveira CF, d’Azevedo PA (2013) Inhibition of biofilm maturation by linezolid in methicillin-resistant Staphylococcus epidermidis clinical isolates: comparison with other drugs. J Med Microbiol 62(Pt 3):394–399. https://doi.org/10.1099/jmm.0.048678-0

    Article  CAS  PubMed  Google Scholar 

  • Rendeková K, Fialová S, Jánošová L, Mučaji P, Slobodníková L (2016) The activity of Cotinus coggygria Scop. leaves on Staphylococcus aureus strains in planktonic and biofilm growth forms. Molecules (Basel, Switzerland) 21(1):50

    Article  CAS  Google Scholar 

  • Richards JJ, Melander C (2009) Controlling bacterial biofilms. ChemBioChem 10(14):2287–2294. https://doi.org/10.1002/cbic.200900317

    Article  CAS  PubMed  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  • Romero D, Vlamakis H, Losick R, Kolter R (2011) An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 80(5):1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy AB, Petrova OE, Sauer K (2012) The phosphodiesterase DipA (PA5017) is essential for pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozalski M, Micota B, Sadowska B, Stochmal A, Jedrejek D, Wieckowska-Szakiel M, Rozalska B (2013) Antiadherent and antibiofilm activity of Humulus lupulus L. derived pro ducts: new pharmacological properties. Biomed Res Int 2013:101089. https://doi.org/10.1155/2013/101089

    Article  PubMed  PubMed Central  Google Scholar 

  • Rukayadi Y, Hwang JK (2006) Effect of coating the wells of a polystyrene microtiter plate with xanthorrhizol on the biofilm formation of Streptococcus mutans. J Basic Microbiol 46(5):410–415. https://doi.org/10.1002/jobm.200510088

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Saini S, Sharma S (2011) Biofilm: a dental microbial infection. J Natur Sci Biol Med 2(1):71

    Article  Google Scholar 

  • Saxena P, Joshi Y, Rawat K, Bisht R (2019) Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian J Microbiol 59(1):3–12

    Article  PubMed  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93(18):9505–9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA et al (2009) Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4:e5513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8(6):e1002744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiner E, Terentyev D, Bryan A, Sennoune S, Martinez-Zaguilan R, Li G, Gyorke S, Williams S, Rumbaugh K (2006) Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 8(10):1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Shuai-Cheng W, Ben-Dong F, Xiu-Ling C, Jian-Qing S, Yun-Xing F, Zhen-Qiang C, Dao-Xiu X, Zong-Mei W (2016) Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection. Antonie Van Leeuwenhoek 109(11):1503–1512. https://doi.org/10.1007/s10482-016-0752-z

    Article  CAS  PubMed  Google Scholar 

  • Sifri CD (2008) Quorum sensing: bacteria talk sense. Clin Infect Dis 47(8):1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Bu Y, Suga H (2003) Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 10(6):563–571

    Article  CAS  PubMed  Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    Article  CAS  PubMed  Google Scholar 

  • Steenackers HP, Parijs I, Dubey A, Foster KR, Vanderleyden J (2016) Experimental evolution in biofilm populations. FEMS Microbiol Rev 40(6):980. https://doi.org/10.1093/femsre/fuw030

    Article  Google Scholar 

  • Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaughan EE, De Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81(1-4):233–243

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Smith KM (2003) Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr Opin Chem Biol 7(5):586–591

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227

    Article  CAS  PubMed  Google Scholar 

  • Tayeb-Fligelman E, Salinas N, Tabachnikov O, Landau M (2020) Staphylococcus aureus PSMα3 cross-α fibril polymorphism and determinants of cytotoxicity. Structure (London, England: 1993) 28(3):301–313. https://doi.org/10.1016/j.str.2019.12.006

    Article  CAS  Google Scholar 

  • Topa SH, Subramoni S, Palombo EA, Kingshott P, Rice SA, Blackall LL (2018) Cinnamaldehyde disrupts biofilm formation and swarming motility of Pseudomonas aeruginosa. Microbiology (Reading, England) 164(9):1087–1097. https://doi.org/10.1099/mic.0.000692

    Article  CAS  Google Scholar 

  • Trivedi A, Mavi PS, Bhatt D, Kumar A (2016) Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat Commun 7(1):11392. https://doi.org/10.1038/ncomms11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, Omasits U, Ito S, Yap X, Monahan LG, Cavaliere R, Ahrens CH, Charles IG, Nomura N, Eberl L, Whitchurch CB (2016) Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 7:11220. https://doi.org/10.1038/ncomms11220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda A, Wood TK (2009) Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyay A, Upadhyaya I, Johny AK, Venkitanarayanan K (2014) Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. Biomed Res Int 2014:761741

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76(1):243–253

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading) 157(Pt 7):2120–2132

    Article  CAS  Google Scholar 

  • Vasconcelos NG, Croda J, Simionatto S (2018) Antibacterial mechanisms of cinnamon and its constituents: a review. Microb Pathog 120:198–203. https://doi.org/10.1016/j.micpath.2018.04.036

    Article  CAS  PubMed  Google Scholar 

  • Vester B, Douthwaite S (2001) Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 45:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180(9):2442–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar S, Malaikozhundan B, Saravanakumar K, Duran-Lara EF, Wang MH, Vaseeharan B (2019) Garlic clove extract assisted silver nanoparticle—antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol B 198:111558. https://doi.org/10.1016/j.jphotobiol.2019.111558

    Article  CAS  PubMed  Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109(2):515–527. https://doi.org/10.1111/j.1365-2672.2010.04677.x

    Article  CAS  PubMed  Google Scholar 

  • Vipin C, Mujeeburahiman M, Ashwini P, Arun A, Rekha PD (2019) Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett Appl Microbiol 68(5):464–471

    Article  CAS  PubMed  Google Scholar 

  • Walencka E, Rozalska S, Wysokinska H, Rozalski M, Kuzma L, Rozalska B (2007) Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med 73(6):545–551. https://doi.org/10.1055/s-2007-967179

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Khan BA, Cheung GYC, Bach T-HL, Jameson-Lee M, Kong K-F et al (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121:238–248

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hou J, van der Mei HC, Busscher HJ, Ren Y (2019) Emergent properties in streptococcus mutans biofilms are controlled through adhesion force sensing by initial colonizers. MBio 10:5. https://doi.org/10.1128/mBio.01908-19

    Article  Google Scholar 

  • Williams P (2002) Quorum sensing: an emerging target for antibacterial chemotherapy? Exp Opin Therap Target 6(3):257–274

    Article  CAS  Google Scholar 

  • Wood TK, Barrios AFG, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72(2):361–367

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (1999) Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Park KC, Choi BG, Park JH, Yoon KS (2016) The antibiofilm effect of ginkgo biloba extract against salmonella and listeria isolates from poultry. Foodborne Pathog Dis 13(5):229–238. https://doi.org/10.1089/fpd.2015.2072

    Article  CAS  PubMed  Google Scholar 

  • Xu LC, Wo Y, Meyerhoff ME, Siedlecki CA (2017) Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomater 51:53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Sharo AG, Stone HA, Wingreen NS, Bassler BL (2016) Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc Natl Acad Sci U S A 113(36):E5337–E5343. https://doi.org/10.1073/pnas.1611494113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Yan F, Chen Y, Jin C, Guo J-H, Chai Y (2016) Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front Microbiol 7:1811

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79(1):119–126. https://doi.org/10.1007/s00253-008-1406-5

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Rui X, Wang L, Guan Y, Sun X, Dong M (2014) Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control 42:125–131

    Article  CAS  Google Scholar 

  • Zhang J, Ye KP, Zhang X, Pan DD, Sun YY, Cao JX (2016) Antibacterial activity and mechanism of action of black pepper essential oil on meat-borne Escherichia coli. Front Microbiol 7:2094

    PubMed  Google Scholar 

  • Zhou JW, Luo HZ, Jiang H, Jian TK, Chen ZQ, Jia AQ (2018) Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against pseudomonas aeruginosa. J Agric Food Chem 66(7):1620–1628. https://doi.org/10.1021/acs.jafc.7b05035

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ratha, B.N., Lahiri, D., Ray, R.R. (2021). Inhibition of Biofilm Formation. In: Ray, R.R., Nag, M., Lahiri, D. (eds) Biofilm-Mediated Diseases: Causes and Controls. Springer, Singapore. https://doi.org/10.1007/978-981-16-0745-5_9

Download citation

Publish with us

Policies and ethics