Skip to main content

Abstract

Bacteria divide asexually by binary fission which involves increase in cell size, DNA concentration and cell mass followed by division to produce two daughter cells with equal mass and DNA. This process, in contrast to mitosis, lacks discrete cell cycle checkpoints, and no spindle fibers are formed during segregation. Replication of DNA commences only once the cell has reached a particular mass termed as ‘initiation mass’ required to trigger replication. DNA replication in E. coli is bi-directional with two replication forks running in opposite directions. Following replication, the parent and the newly replicated daughter chromosome segregate and most bacteria utilize ParABparS partitioning system for segregation of daughter chromosomes. In Caulobacter cresentus which exhibits dimorphic cell cycle, asymmetric cell division is controlled by regulated synthesis and degradation of CtrA protein. Cell division in E. coli is conducted by at least 10 essential proteins forming a dynamic complex termed as ‘divisome’ or ‘septosome.’ Details regarding FtsZ polymerization and cell plate formation will be described with reference to E. coli. Stepwise assembly of divisome formation by recruitment of sub-complexes and their role in cytokinesis will be discussed while describing important proteins involved in divisome assembly. Synthesis of peptidoglycan to fill in the gaps during constriction will be dealt in detail followed by description of Tol-Pal system involved in outer membrane constriction of gram-negative bacteria. Regulation of septum formation exactly at the cellular mid-point and not towards the pole by specialized systems—Min system and nucleoid occlusion—will be explained in detail. Since cell division is a crucial step for cell survival in bacteria, some leads generated using natural products as antimicrobials targeting division proteins are discussed. FtsZ has a limited similarity with human tubulin, while FtsBLQ coordinates multitude of transient reactions in the divisome. In this light, these proteins are perspective drug targets and have been highlighted toward the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badrinarayanan, A., Le, T. B., & Laub, M. T. (2015). Bacterial chromosome organization and segregation. Annual Review of Cell and Developmental Biology, 31, 171–199.

    Article  CAS  Google Scholar 

  • Beattie, T. R., & Reyes-Lamothe, R. (2015). A replisome’s journey through the bacterial chromosome. Frontiers in Microbiology, 6, 562.

    Article  Google Scholar 

  • Bernander, R. (2007). The cell cycle of Sulfolobus. Molecular Microbiology, 66(3), 557–562.

    Article  CAS  Google Scholar 

  • Cooper, S., & Helmstetter, C. E. (1968). Chromosome replication and the division cycle of Escherichia coli Br. Journal of Molecular Biology, 31(3), 519–540.

    Article  CAS  Google Scholar 

  • Den Blaauwen, T., & Luirink, J. (2019). Checks and balances in bacterial cell division. MBio, 10(1), e00149-e219.

    Google Scholar 

  • Egan, A. J., & Vollmer, W. (2013). The physiology of bacterial cell division. Annals of the New York Academy of Sciences, 1277(1), 8–28.

    Article  CAS  Google Scholar 

  • Gray, A. N., Egan, A. J., van’t Veer, I. L., Verheul, J., Colavin, A., Koumoutsi, A., ... Simorre, J. P. (2015). Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. elife 4, e07118.

    Google Scholar 

  • Hughes, V., Jiang, C., & Brun, Y. (2012). Caulobacter Crescentus. Current Biology: CB, 22(13), R507.

    Article  CAS  Google Scholar 

  • Lindås, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J., & Bernander, R. (2008). A unique cell division machinery in the Archaea. Proceedings of the National Academy of Sciences, 105(48), 18942–18946.

    Article  Google Scholar 

  • Li, X., & Ma, S. (2015). Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ. European Journal of Medicinal Chemistry, 95, 1–15.

    Article  Google Scholar 

  • Lundgren, M., Andersson, A., Chen, L., Nilsson, P., & Bernander, R. (2004). Three replication origins in Sulfolobus species: Synchronous initiation of chromosome replication and asynchronous termination. Proceedings of the National Academy of Sciences, 101(18), 7046–7051.

    Article  CAS  Google Scholar 

  • Makarova, K. S., Yutin, N., Bell, S. D., & Koonin, E. V. (2010). Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Reviews Microbiology, 8(10), 731–741.

    Article  CAS  Google Scholar 

  • Mott, M. L., & Berger, J. M. (2007). DNA replication initiation: Mechanisms and regulation in bacteria. Nature Reviews Microbiology, 5(5), 343–354.

    Article  CAS  Google Scholar 

  • Murray, S. M., & Sourjik, V. (2018). Self-organised segregation of bacterial chromosomal origins. bioRxiv, 304600.

    Google Scholar 

  • Rico, A. I., Krupka, M., & Vicente, M. (2013). In the beginning, Escherichia coli assembled the proto-ring: An initial phase of division. Journal of Biological Chemistry, 288(29), 20830–20836.

    Article  CAS  Google Scholar 

  • Rowlett, V. W., & Margolin, W. (2013). The bacterial min system. Current Biology, 23(13), R553–R556.

    Article  CAS  Google Scholar 

  • Rowlett, V. W., & Margolin, W. (2015). The min system and other nucleoid-independent regulators of Z ring positioning. Frontiers in Microbiology, 6, 478.

    Article  Google Scholar 

  • Surtees, J. A., & Funnell, B. E. (2003). Plasmid and chromosome traffic control: How ParA and ParB drive partition. Current Topics in Developmental Biology, 56, 145–180.

    Article  CAS  Google Scholar 

  • Tonthat, N. K., Arold, S. T., Pickering, B. F., Van Dyke, M. W., Liang, S., Lu, Y., ... Schumacher, M. A. (2011). Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. The EMBO journal, 30(1), 154–164.

    Google Scholar 

  • Trojanowski, D., Hołówka, J., & Zakrzewska-Czerwińska, J. (2018). Where and when bacterial chromosome replication starts: A single cell perspective. Frontiers in Microbiology, 9, 2819.

    Article  Google Scholar 

  • Wang, J. D., & Levin, P. A. (2009). Metabolism, cell growth and the bacterial cell cycle. Nature Reviews Microbiology, 7(11), 822–827.

    Article  CAS  Google Scholar 

  • Wang, X., Llopis, P. M., & Rudner, D. Z. (2013). Organization and segregation of bacterial chromosomes. Nature Reviews Genetics, 14(3), 191–203.

    Article  CAS  Google Scholar 

  • Wu, L. J., & Errington, J. (2012). Nucleoid occlusion and bacterial cell division. Nature Reviews Microbiology, 10(1), 8–12.

    Article  CAS  Google Scholar 

  • Zaritsky, A., & Woldringh, C. L. (2015). Chromosome replication, cell growth, division and shape: A personal perspective. Frontiers in Microbiology, 6, 756.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R., Gupta, N., Kashyap, A. (2021). Cell Division. In: Fundamentals of Bacterial Physiology and Metabolism. Springer, Singapore. https://doi.org/10.1007/978-981-16-0723-3_4

Download citation

Publish with us

Policies and ethics