Skip to main content

Millet Starch: Current Knowledge and Emerging Insights of Structure, Physiology, Glycaemic Attributes and Uses

  • Chapter
  • First Online:
Millets and Millet Technology

Abstract

The risk of chronic diseases like diabetes, myocardial infarction, and obesity can be reduced by dietary changes and advance research in nutritional biology. Starch composition of millet grains is very high which almost accounts for 60–70% of millet grains and it tremendously affects the quality of millet-based products. Compared to the major cereals, the hypoglycaemic properties and other superior attributes of millet starch could make it a promising ingredient for the functional food industry. However, scanty knowledge on structural and functional attributes of millet starch seriously hinders further improvement of millets as functional and nutraceutical food. Here, we discussed the current knowledge and emerging insights of the isolation, structure, chemical composition, physicochemical properties, interaction with other constituents, and uses of millet starch. The aim of this chapter is to enlighten the benefits of millet starch and its uses in relation to reduce the risk of chronic disorders and enhance nutritional security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ačkar Đ, Babić J, Jozinović A, Miličević B, Jokić S, Miličević R et al (2015) Starch modification by organic acids and their derivatives: a review. Molecules 20(10):19554–19570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agama-Acevedo E, De La Rosa APB, Méndez-Montealvo G, Bello-Pérez LA (2008) Physicochemical and biochemical characterization of starch granules isolated of pigmented maize hybrids. Starch-Stärke 60(8):433–441

    Article  CAS  Google Scholar 

  • Agarry OO, Nkama I, Akoma O (2010) Production of Kunun-zaki (a Nigerian fermented cereal beverage) using starter culture. Int Res J Microbiol 1(2):18–25

    Google Scholar 

  • Ai Y, Jane JL (2015) Gelatinization and rheological properties of starch. Starch-Stärke 67(3–4):213–224

    Article  CAS  Google Scholar 

  • Amadou I, Gbadamosi OS, Le GW (2011) Millet-based traditional processed foods and beverages—a review. Cereal Foods World 56(3):115

    Google Scholar 

  • Angioloni A, Collar C (2013) Suitability of oat, millet and sorghum in breadmaking. Food Bioprocess Technol 6(6):1486–1493

    Article  CAS  Google Scholar 

  • Annor GA, Marcone M, Bertoft E, Seetharaman K (2013) In vitro starch digestibility and expected glycemic index of kodo millet (Paspalum scrobiculatum) as affected by starch–protein–lipid interactions. Cereal Chem 90(3):211–217

    Article  CAS  Google Scholar 

  • Annor GA, Marcone M, Bertoft E, Seetharaman K (2014) Physical and molecular characterization of millet starches. Cereal Chem 91(3):286–292

    Article  CAS  Google Scholar 

  • Annor GA, Marcone M, Corredig M, Bertoft E, Seetharaman K (2015) Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI). J Cereal Sci 64:76–81

    Article  CAS  Google Scholar 

  • Binqiang T, Chao W, Lan W, Bijun X (2016) Granule size and distribution of raw and germinated oat starch in solid state and ethanol solution. Int J Food Prop 19(3):709–719

    Article  CAS  Google Scholar 

  • Boncompagni E, Orozco-Arroyo G, Cominelli E, Gangashetty PI, Grando S, Zu TTK et al (2018) Antinutritional factors in pearl millet grains: phytateand goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 13(6):e0198394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bora P, Ragaee S, Marcone M (2019) Characterisation of several types of millets as functional food ingredients. Int J Food Sci Nutr 70(6):714–724

    Article  CAS  PubMed  Google Scholar 

  • Buleon A, Colonna P, Planchot P, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Kanabus J (1987) Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Anal Biochem 161(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekara A, Shahidi F (2011) Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J Funct Foods 3(3):144–158

    Article  CAS  Google Scholar 

  • Chauhan M, Sonawane SK, Arya SS (2018) Nutritional and nutraceutical properties of millets: a review. Clin J Nutr Dietet 1(1):1–10

    Google Scholar 

  • Chethan S, Dharmesh SM, Malleshi NG (2008) Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg Med Chem 16(23):10085–10090

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Kim W, Shin M (2004) Properties of Korean amaranth starch compared to waxy millet and waxy sorghum starches. Starch 56(10):469–477

    Article  CAS  Google Scholar 

  • Dahal NR, Karki TB, Swamylingappa B, Li Q, Gu G (2005) Traditional foods and beverages of Nepal—a review. Food Rev Intl 21(1):1–25

    Article  Google Scholar 

  • Dayakar Rao B, Vishala AD, Arlene Christina GD, Tonapi VA (2016) Technologies of millet value added products. Centre of Excellence on Sorghum, ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad

    Google Scholar 

  • Dev R, Kumar S, Singh J, Chauhan B (2011) Potential role of nutraceuticals in present scenario: a review. J Appl Pharm Sci 1:26–28

    Google Scholar 

  • Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51(6):1021–1040

    Article  CAS  PubMed  Google Scholar 

  • Englyst H, Wiggins HS, Cummings JH (1982) Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107(1272):307–318

    Article  CAS  PubMed  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Fardet A, Leenhardt F, Lioger D, Scalbert A, Rémésy C (2006) Parameters controlling the glycaemic response to breads. Nutr Res Rev 19(1):18–25

    Article  PubMed  Google Scholar 

  • Fardet A, Rock E, Rémésy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48(2):258–276

    Article  CAS  Google Scholar 

  • Food and Agricultural Organisation (FAO) of the United Nations. (1995) Sorghum and millets in human nutrition. FAO Food and Nutrition Series, No. 27. FAO, Rome. ISBN 92-5-103381-1

    Google Scholar 

  • Fu MX, Knecht KJ, Thorpe SR, Baynes JW (1992) Role of oxygen in cross-linking and chemical modification of collagen by glucose. Diabetes 41(Suppl 2):42–48

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Fujiyama G (1993) The study of melting temperature and enthalpy of starch from rice, barley, wheat, foxtail- and proso-millets. Starch-Stärke 45(12):436–441

    Article  CAS  Google Scholar 

  • Gaffa T, Yoshimoto Y, Hanashiro I, Honda O, Kawasaki S, Takeda Y (2004) Physicochemical properties and molecular structures of starches from millet (Pennisetum typhoides) and sorghum (Sorghum bicolor L. Moench) cultivars in Nigeria. Cereal Chem 81(2):255–260

    Article  CAS  Google Scholar 

  • Gubatz S, Shewry PR, Ullrich S (2010) The development, structure, and composition of the barley grain. In: Barley: production, improvement, and uses, vol 11. Wiley, Ames, IA, p 391

    Chapter  Google Scholar 

  • Gull A, Nayik GA, Prasad K, Kumar P (2015) RETRACTED ARTICLE: Nutritional, technological, and medical approach of finger millet (Eleusine coracana). Cogent Food Agric 1(1):1090897

    Google Scholar 

  • Hallstrom E, Sestili F, Lafiandra D, Bjorck I, Ostman E (2011) A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food Nutr Res. https://doi.org/10.3402/fnr.v55i0.7074

  • Hamaker BR, Bugusu BA (2003) Overview: sorghum proteins and food quality. In: Workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for Africa [CD], Pretoria: South Africa

    Google Scholar 

  • Han W, Zhang B, Li J, Zhao S, Niu M, Jia C, Xiong S (2017) Understanding the fine structure of intermediate materials of maize starches. Food Chem 233:450–456

    Article  CAS  PubMed  Google Scholar 

  • Haralampu SG (2000) Resistant starch—a review of the physical properties and biological impact of RS3. Carbohydr Polym 41(3):285–292

    Article  CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45(3):253–267

    Article  CAS  Google Scholar 

  • Hoover R, Swamidas G, Kok LS, Vasanthan T (1996) Composition and physicochemical properties of starch from pearl millet grains. Food Chem 56(4):355–367

    Article  CAS  Google Scholar 

  • Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43(2):399–413

    Article  CAS  Google Scholar 

  • Jane JL, Kasemsuwan T, Leas S, Zobel H, Robyt JF (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Stärke 46(4):121–129

    Article  CAS  Google Scholar 

  • Jenkins DJ, Thorne MJ, Wolever TM, Jenkins AL, Rao AV, Thompson LU (1987) The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. Am J Clin Nutr 45(5):946–951

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Campbell M, Blanco M, Jane JL (2010a) Characterization of maize amylose-extender (ae) mutant starches: Part II. Structures and properties of starch residues remaining after enzymatic hydrolysis at boiling-water temperature. Carbohydr Polym 80(1):1–12

    Article  CAS  Google Scholar 

  • Jiang H, Lio J, Blanco M, Campbell M, Jane JL (2010b) Resistant-starch formation in high-amylose maize starch during kernel development. J Agric Food Chem 58(13):8043–8047

    Article  CAS  PubMed  Google Scholar 

  • Jideani VA, Oloruntoba RH, Jideani IA (2010) Optimization of fura production using response surface methodology. Int J Food Prop 13(2):272–281

    Article  CAS  Google Scholar 

  • Karwasra BL, Gill BS, Kaur M (2017) Rheological and structural properties of starches from different Indian wheat cultivars and their relationships. Int J Food Prop 20(Suppl 1):S1093–S1106

    Article  CAS  Google Scholar 

  • Kaur L, Singh J, McCarthy OJ, Singh H (2007) Physico-chemical, rheological and structural properties of fractionated potato starches. J Food Eng 82(3):383–394

    Article  CAS  Google Scholar 

  • Kawai K, Takato S, Sasaki T, Kajiwara K (2012) Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocoll 27(1):228–234

    Article  CAS  Google Scholar 

  • Kim JS, Hyun TK, Kim MJ (2011) The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chem 124(4):1647–1651

    Article  CAS  Google Scholar 

  • King L (2001) Impaired wound healing in patients with diabetes. Nursng Stand 15(38):39

    Article  CAS  Google Scholar 

  • Klucinec JD, Thompson DB (1998) Fractionation of high-amylose maize starches by differential alcohol precipitation and chromatography of the fractions. Cereal Chem 75(6):887–896

    Article  CAS  Google Scholar 

  • Kulkarni DB, Sakhale BK, Giri NA (2018) A potential review on millet grain processing. Int J Nutr Sci 3:1–8

    Google Scholar 

  • Kumar R, Khatkar BS (2017) Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. J Food Sci Technol 54(8):2403–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S et al (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front Plant Sci 7:934

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Tomer V, Kaur A, Kumar V, Gupta K (2018) Millets: a solution to agrarian and nutritional challenges. Agric Food Secur 7(1):31

    Article  Google Scholar 

  • Kumari PL, Sumathi S (2002) Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum Nutr 57(3–4):205–213

    Article  Google Scholar 

  • Kumari SK, Thayumanavan B (1997) Comparative study of resistant starch from minor millets on intestinal responses, blood glucose, serum cholesterol and triglycerides in rats. J Sci Food Agric 75(3):296–302

    Article  CAS  Google Scholar 

  • Kumari SK, Thayumanavan B (1998) Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods Hum Nutr 53(1):47–56

    Article  Google Scholar 

  • Laminu HH, Modu S, Numan AI (2011) Production, in vitro protein digestibility, phytate content and acceptability of weaning foods prepared from pearl millet (Pennisetum typhoideum) and cowpea (Vigna unguiculata). Int J Nutr Metab 3(9):109–113

    CAS  Google Scholar 

  • Lee SH, Chung IM, Cha YS, Park Y (2010) Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res 30(4):290–296

    Article  CAS  PubMed  Google Scholar 

  • Lei V, Jakobsen M (2004) Microbiological characterization and probiotic potential of koko and koko sour water, African spontaneously fermented millet porridge and drink. J Appl Microbiol 96(2):384–397

    Article  CAS  PubMed  Google Scholar 

  • Lei V, Friis H, Michaelsen KF (2006) Spontaneously fermented millet product as a natural probiotic treatment for diarrhoea in young children: an intervention study in Northern Ghana. Int J Food Microbiol 110(3):246–253

    Article  PubMed  Google Scholar 

  • Liu C, Liu P, Yan S, Qing Z, Shen Q (2011) Relationship of physicochemical, pasting properties of millet starches and the texture properties of cooked millet. J Texture Stud 42(4):247–253

    Article  CAS  Google Scholar 

  • Lorenz K, Hinze G (1976) Functional characteristics of starches from proso and foxtail millets. J Agric Food Chem 24(5):911–914

    Article  CAS  Google Scholar 

  • Ma Z, Hu X, Boye JI (2020) Research advances on the formation mechanism of resistant starch type III: a review. Crit Rev Food Sci Nutr 60(2):276–297

    Article  CAS  PubMed  Google Scholar 

  • Majid A, Poornima Priyadarshini CG (2019) Millet derived bioactive peptides: a review on their functional properties and health benefits. Crit Rev Food Sci Nutr 60(19):3342–3351

    Article  PubMed  CAS  Google Scholar 

  • Malleshi NG, Desikachar HSR, Tharanathan RN (1986) Physico-chemical properties of native and malted finger millet, pearl millet and foxtail millet starches. Starch-Stärke 38(6):202–205

    Article  CAS  Google Scholar 

  • McDonough CM, Rooney LW, Earp CF (1986) Structural characteristics of Eleusine corocana (finger millet) using scanning electron and fluorescence microscopy. Food Struct 5(2):9

    Google Scholar 

  • Mepba HD, Eboh L, Eko CB, Ukpabi UJ (2009) Composition and pasting properties of starch from two cocoyam cultivars. J Food Qual 32(4):522–537

    Article  CAS  Google Scholar 

  • Ojijo NK, Shimoni E (2007) Influence of xanthan gum and tapioca starch on the retrogradation and gelation of finger millet (Eleusine coracana L. Gaertner) starch pastes. J Texture Stud 38(1):100–115

    Article  Google Scholar 

  • Onyango C, Noetzold H, Ziems A, Hofmann T, Bley T, Henle T (2005) Digestibility and antinutrient properties of acidified and extruded maize–finger millet blend in the production of uji. LWT Food Sci Technol 38(7):697–707

    Article  CAS  Google Scholar 

  • Ostlund RE Jr (2002) Phytosterols in human nutrition. Annu Rev Nutr 22(1):533–549

    Article  CAS  PubMed  Google Scholar 

  • Panyoo AE, Emmambux MN (2017) Amylose–lipid complex production and potential health benefits: a mini-review. Starch-Stärke 69(7–8):1600203

    Article  CAS  Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke 62(8):389–420

    Article  CAS  Google Scholar 

  • Pradhan A, Nag SK, Patil SK (2010) Dietary management of finger millet (Eleusine coracana L. Gaerth) controls diabetes. Curr Sci 98(6):763–765

    Google Scholar 

  • Premavalli KS, Jagannath JH, Majumdar TK, Bawa AS (2005) Studies on phase transition in finger millet starch in relation to gelatinisation. J Food Sci Technol Mysore 42(4):336–340

    CAS  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177(4):281–296

    Article  CAS  Google Scholar 

  • Reddy DK, Bhotmange MG (2013) Isolation of starch from rice (Oryza sativa L.) and its morphological study using scanning electron microscopy. Int J Agric Food Sci Technol 4(9):859–866

    Google Scholar 

  • Ring SG, Colonna P, I’Anson KJ, Kalichevsky MT, Miles MJ, Morris VJ, Orford PD (1987) The gelation and crystallisation of amylopectin. Carbohydr Res 162(2):277–293

    Article  CAS  Google Scholar 

  • Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12(3):281–295

    Article  CAS  Google Scholar 

  • Salem MH, Hippen AR, Salem MM, Assem FM, El-Aassar M (2012) Survival of probiotic Lactobacillus casei and Enterococcus fecium in domiati cheese of high conjugated linoleic acid content. Emirates J Food Agric 24:98–104

    Google Scholar 

  • Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol 31(1–3):79–85

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Niranjan K (2018) Foxtail millet: properties, processing, health benefits, and uses. Food Rev Intl 34(4):329–363

    Article  CAS  Google Scholar 

  • Shingel KI (2002) Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res 337(16):1445–1451

    Article  CAS  PubMed  Google Scholar 

  • Shinoj S, Viswanathan R, Sajeev MS, Moorthy SN (2006) Gelatinisation and rheological characteristics of minor millet flours. Biosyst Eng 95(1):51–59

    Article  Google Scholar 

  • Shobana S, Sreerama YN, Malleshi NG (2009) Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem 115(4):1268–1273

    Article  CAS  Google Scholar 

  • Shukla K, Srivastava S (2014) Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. J Food Sci Technol 51(3):527–534

    Article  CAS  PubMed  Google Scholar 

  • Simwemba CG, Hoseney RC, Varriano-Marston E, Zeleznak K (1984) Certain B vitamin and phytic acid contents of pearl millet [Pennisetum americanum (L.) Leeke]. J Agric Food Chem 32(1):31–34

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231

    Article  CAS  Google Scholar 

  • Singh V, Ali SZ, Somashekar R, Mukherjee PS (2006) Nature of crystallinity in native and acid modified starches. Int J Food Prop 9(4):845–854

    Article  CAS  Google Scholar 

  • Srichuwong S, Jane JL (2007) Physicochemical properties of starch affected by molecular composition and structures: a review. Food Sci Biotechnol 16(5):663

    CAS  Google Scholar 

  • Suma PF, Urooj A (2015) Isolation and characterization of starch from pearl millet (Pennisetum typhoidium) flours. Int J Food Prop 18(12):2675–2687

    Article  CAS  Google Scholar 

  • Taylor JR, Duodu KG (2015) Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J Sci Food Agric 95(2):225–237

    Article  CAS  PubMed  Google Scholar 

  • Ugare R, Chimmad B, Naik R, Bharati P, Itagi S (2014) Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. J Food Sci Technol 51(2):392–395

    Article  CAS  PubMed  Google Scholar 

  • Van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR (2006) Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in US black women. Diabetes Care 29(10):2238–2243

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran V, Vijayalakshmi G (2010) Finger millet (Eleusine coracana)—an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus. J Food Sci Technol 47(4):426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma VC, Kumar A, Zaidi MGH, Verma AK, Jaiswal JP, Singh DK, Sing A, Agrawal S (2018) Starch isolation formed different cereals with variable amylose/amylopectin ratio and its morphological study using SEM and FT-IR. Int J Curr Microbiol Appl Sci 7(10):211–228

    Article  CAS  Google Scholar 

  • Zhu F (2014) Structure, physicochemical properties, and uses of millet starch. Food Res Int 64:200–211

    Article  CAS  PubMed  Google Scholar 

  • Zvauya R, Mygochi T, Parawira W (1997) Microbial and biochemical changes occurring during production of masvusvu and mangisi, traditional Zimbabwean beverages. Plant Foods Hum Nutr 51(1):43–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, V.C., Agrawal, S., Tripathi, M.K., Kumar, A. (2021). Millet Starch: Current Knowledge and Emerging Insights of Structure, Physiology, Glycaemic Attributes and Uses. In: Kumar, A., Tripathi, M.K., Joshi, D., Kumar, V. (eds) Millets and Millet Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0676-2_6

Download citation

Publish with us

Policies and ethics