Skip to main content

Genomics-Assisted Improvement of Grain Quality and Nutraceutical Properties in Millets

  • Chapter
  • First Online:
Millets and Millet Technology

Abstract

Current projections suggest that the global population could reach nine billion by 2050. To meet the food demand of such a huge population, a 70% increase in global food production is projected by 2050. The conventional cereal crops might not be able to fulfill these requirements because the ultimate yield potential of most of these crops is currently at a plateau level. To replace the existing pressure on conventional crops, millets are the best alternatives in the near future considering the global food sustainability and nutritional reliability. By virtue of their exceptional nutritional profiles, they have a great potential to contribute to solve the malnourishment problems mainly in low-income food deficient developing countries. Also, the C4 photosynthetic pathway and its ability to combat the moisture stress make them a ultimate option for climate resilient agriculture. In spite of enormous perspective, attempt for the genetic advancement of millets is considerably lagged behind the conventional cereal crops. Research done so far in millets has decoded their exceptional nutritive value, broad adjustability, and phenotypic plasticity. Information on genetic mechanisms underlying important agronomic traits of millets including nutritional parameters is limited. To improve the crop very lesser efforts have been devoted by applying novel biotechnological and genomic tools. However, with the availability of draft genome sequences for some of the millets, there is wide scope to accelerate the progression of genetic improvement. This chapter is an attempt to gather the meager information available on the aspects of grain quality and nutraceutical development in millets by utilizing the potential of emerging genomics tools and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Rahman SM, Babiker EE, Tinay AH (2005) Effect of fermentation on antinutritional factors and HCl extractability of minerals of pearl millet cultivars. J Food Technol 3:516–522

    Google Scholar 

  • Anonymous (2016) Annual report 2016–2017. ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India. p 184

    Google Scholar 

  • Anonymous (2018) Annual report 2018–2019. ICAR-Vivekanada Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India. p 184

    Google Scholar 

  • Appels R, Eversole K, Stein N et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. https://doi.org/10.1126/scienceaar7191

  • Aslam B, Basit M, Nisar MA et al (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55(2):182–196

    Article  CAS  Google Scholar 

  • Babu BK, Dinesh P, Agrawal PK et al (2014) Comparative genomics and association mapping approach for blast resistant genes in finger millet using SSRs. PLoS One 9(6):e99182

    Article  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    Article  Google Scholar 

  • Cavanagh C, Morell M, Mackay I et al (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery n crop plants. Curr Opin Plant Biol 11:215–221

    Article  Google Scholar 

  • Chethan S, Malleshi NG (2007) Finger millet polyphenols optimization of extraction and the effect of pH on their stability. Food Chem 105:862–870

    Article  CAS  Google Scholar 

  • Chopperla R, Singh S, Tomar RS et al (2018) Isolation and allelic characterization of finger millet (Eleusine coracana L) small heat shock protein EcHSP178 for stress tolerance. Indian J Genet 78(1):95–103

    Article  CAS  Google Scholar 

  • Combs GF, Trumbo PR, McKinley MC et al (2013) Biomarkers in nutrition: new frontiers in research and application. Ann N Y Acad Sci 1278:1–10

    Article  CAS  Google Scholar 

  • Devi PB, Vijayabharathi R, Sathyabama S et al (2014) Health benefits of finger millet (Eleusine coracana L) polyphenols and dietary fiber: a review. J Food Sci Technol 51:1021–1040

    Article  CAS  Google Scholar 

  • Gupta SC, Muza FR, Andrews DJ (1997) Registration of INFM 95001 finger millet genetic male sterile line. Crop Sci 37:1409

    Article  Google Scholar 

  • Hatakeyama M, Aluri S, Balachadran MT et al (2017) Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res. https://doi.org/10.1093/dnares/dsx036

  • Hittalmani S, Mahesh HB, Shirke MD et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L) Gaertn) provides insights into drought tolerance and nutraceutical properties. BMC Genomics. https://doi.org/10.1186/s12864-017-3850-z

  • Jagadeesh DS, Kannegundla U, Reddy RK (2017) Application of proteomic tools in food quality and safety. Adv Anim Vet Sci 5(5):213–225

    Google Scholar 

  • Kokane SB, Pathak RK, Singh M et al (2018) The role of tripartite interaction of calcium sensors and transporters in the accumulation of calcium in finger millet grain. Biol Plant. https://doi.org/10.1007/s10535-018-0776-5

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  Google Scholar 

  • Kumar A, Gaur VS, Goel A et al (2015) De novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol Biol Rep 33:905–922

    Article  CAS  Google Scholar 

  • Kumar A, Sharma D, Tiwari A et al (2016) Genotyping-by-sequencing analysis for determining population structure of finger millet germplasm of diverse origins. Plant Genome 9(2):1–15

    Article  Google Scholar 

  • Kussmann M, Raymond F, Affolte M (2006) OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 124:758–787

    Article  CAS  Google Scholar 

  • Liu D, Liu Y, Zhang W et al (2017) Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 9:465

    Article  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  Google Scholar 

  • Mirza N, Taj G, Arora S et al (2014) Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L Gartn). Gene 550:171–179

    Article  CAS  Google Scholar 

  • Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19:1602–1616

    Article  CAS  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  Google Scholar 

  • Rajendran SRCK, Yau Y, Pandey D et al (2016) CRISPR-Cas9 based genome engineering: opportunities in agri-food-nutrition and healthcare. OMICS 19(5):1–16

    Google Scholar 

  • Ramakrishnan M, Antony CS, Duraipandiyan V et al (2016) Assessment of genetic diversity, population structure and relationships in Indian and non-Indian genotypes of finger millet (Eleusine coracana (L) Gaertn) using genomic SSR markers. Springer Plus 5(120):1–11

    CAS  Google Scholar 

  • Reddy INBL, Reddy DS, Narasu ML et al (2011) Characterization of disease resistance gene homologues isolated from finger millet (Eleusine coracana L Gaertn). Mol Breed 27:315–328

    Article  Google Scholar 

  • Saleh ASM, Zhang Q, Chen J et al (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295

    Article  CAS  Google Scholar 

  • Saltzman A, Birol E, Bouis HE et al (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2:9–17

    Article  Google Scholar 

  • Singh UM, Chandra M, Shankhdhar SC et al (2014) Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLoS One 9(8):e103963

    Article  Google Scholar 

  • Singh M, Metwal M, Kumar VA et al (2016) Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass finger printing and transcript profiling. J Sci Food Agric 96:672–679

    Article  CAS  Google Scholar 

  • Sood S, Kumar A, Kalyana Babu B, Gaur VS, Pandey D, Kant L, Pattnayak A (2016) Gene discovery and advances in finger millet [Eleusine coracana (L.) Gaertn.] genomics-an important nutri-cereal of future. Front Plant Sci 7:1634

    Article  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  Google Scholar 

  • Tiwari S, Krishnamurthy SL, Kumar V et al (2016a) Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP Chip. PLoS One. https://doi.org/10.1371/journalpone0153610

  • Tiwari C, Wallwork H, Arun B et al (2016b) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Ramesh S, Shivali S et al (2011) Genetic diversity for grain nutrients contents in a core collection of finger millet (Eleusine coracana (L) Gaertn) germplasm. Field Crop Res 121:42–52

    Article  Google Scholar 

  • Vetriventhan M, Upadhyaya HD (2018) Diversity and trait specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L) germplasm collection. Crop J 6:451–463

    Article  Google Scholar 

  • Vetriventhan M, Upadhyaya HD (2019) Variability for productivity and nutritional traits in germplasm of kodo millet (Paspalum scrobiculatum L), an under-utilized nutrients rich climate smart crop. Crop Sci 59:1095–1109

    Article  CAS  Google Scholar 

  • Wallace JG, Upadhyaya HD, Vetriventhan M et al (2015) The genetic makeup of a global barnyard millet germplasm collection. Plant Genome 8. https://doi.org/10.3835/plantgenome2014100067

  • Yamunarani R, Ramegowda GG, Thammegowda H et al (2016) Genetic diversity for grain Zn concentration in finger millet genotypes: potential for improving human Zn nutrition. Crop J 4:229–234

    Article  Google Scholar 

  • Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  Google Scholar 

  • Zou C, Li L, Miki D et al (2019) The genome of broomcorn millet. Nat Commun 10:436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A. et al. (2021). Genomics-Assisted Improvement of Grain Quality and Nutraceutical Properties in Millets. In: Kumar, A., Tripathi, M.K., Joshi, D., Kumar, V. (eds) Millets and Millet Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0676-2_17

Download citation

Publish with us

Policies and ethics