Skip to main content

Artificial Intelligence in Cornea and Refractive Surgery

  • Chapter
  • First Online:
Artificial Intelligence and Ophthalmology

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 450 Accesses

Abstract

Within the corneal subspecialty, refractive surgery and progressive ectatic disorders have seen the most significant development in algorithms and implementation of machine learning for improving patient care. This chapter discusses the existing role of artificial intelligence in cornea and refractive surgery and scope for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daxecker F. Christoph Scheiner’s eye studies. In: Henkes HE, editor. History of ophthalmology 5: sub auspiciis academiae ophthalmologicae internationalis. Dordrecht: Springer; 1993. p. 27–35.

    Google Scholar 

  2. Alarcón A, Rubiño M, Pééérez-Ocón F, Jiménez JR. Theoretical analysis of the effect of pupil size, initial myopic level, and optical zone on quality of vision after corneal refractive surgery. J Refract Surg. 2012;28(12):901–6.

    Article  Google Scholar 

  3. Randleman JB, Trattler WB, Stulting RD. Validation of the ectasia risk score system for preoperative laser in situ keratomileusis screening. Am J Ophthalmol. 2008;145(5):813–8.

    Article  Google Scholar 

  4. Ambrósio R Jr, Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43.

    Article  Google Scholar 

  5. Jonas JB, Nangia V, Matin A, Kulkarni M, Bhojwani K. Prevalence and associations of keratoconus in rural Maharashtra in central India: the central India eye and medical study. Am J Ophthalmol. 2009;148(5):760–5.

    Article  Google Scholar 

  6. Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986;101:267–73.

    Article  CAS  Google Scholar 

  7. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24(7):1007–9.

    Article  CAS  Google Scholar 

  8. Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci. 1995;36(7):1327–35.

    CAS  PubMed  Google Scholar 

  9. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38:2290–9.

    CAS  PubMed  Google Scholar 

  10. Smolek MK, Klyce SD. Screening of prior refractive surgery by a wavelet-based neural network. J Cataract Refract Surg. 2001;27:1926–31.

    Article  CAS  Google Scholar 

  11. Vieira de Carvalho LA, Barbosa MS. Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: a quantitative comparison. Arq Bras Oftalmol. 2008;71:337–41.

    Article  Google Scholar 

  12. Belin MW, Khachikian SS. Keratoconus: it is hard to define, but. Am J Ophthalmol. 2007;143:500–3.

    Article  Google Scholar 

  13. Cairns G, McGhee CN. Orbscan computerized topography: attributes, applications, and limitations. J Cataract Refract Surg. 2005;31:205–20.

    Article  Google Scholar 

  14. Souza MB, Medeiros FW, Souza DB, Garcia R, Alves MR. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations. Clinics. 2010;65:1223–8.

    Article  Google Scholar 

  15. Nabney YT. Netlab: algorithms for pattern recognition. 4th ed. London: Springer; 2004.

    Google Scholar 

  16. Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inform. 2002;35:151–9.

    Article  Google Scholar 

  17. Kovács I, Miháltz K, Kránitz K, et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg. 2016;42(2):275–83.

    Article  Google Scholar 

  18. Lopes BT, Ramos IC, Salomão MQ, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am J Ophthalmol. 2018;195:223–32.

    Article  Google Scholar 

  19. Ambrosio R Jr, Lopes BT, Faria-Correia F, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–43.

    Article  Google Scholar 

  20. Vinciguerra R, Ambrósio R Jr, Elsheikh A, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32:803–10.

    Article  Google Scholar 

  21. Lavric A, Valentin P. KeratoDetect: Keratoconus detection algorithm using convolutional neural networks. Comput Intell Neurosci. 2019;2019:8162567.

    Article  Google Scholar 

  22. Xie Y, Zhao L, Yang X, Wu X, Yang Y, Huang X, Liu F, Xu J, Lin L, Lin H, Feng Q, Lin H, Liu Q. Screening candidates for refractive surgery with corneal tomographic-based deep learning. JAMA Ophthalmol. 2020;138(5):519–26.

    Article  Google Scholar 

  23. Yoo TK, Ryu IH, Lee G, et al. Adopting machine learning to automatically identify candidate patients for corneal refractive surgery. NPJ Digit Med. 2019;2:59.

    Article  Google Scholar 

  24. Yoo TK, Ryu IH, Choi H, Kim JK, Lee IS, Kim JS, Lee G, Rim TH. Explainable machine learning approach as a tool to understand factors used to select the refractive surgery technique on the expert level. Trans Vis Sci Tech. 2020;9(2):8.

    Article  Google Scholar 

  25. Koh YW, Celik T, Lee HK, Petznick A, Tong L. Detection of meibomian glands and classification of meibography images. J Biomed Opt. 2012;17(8):086008.

    Article  Google Scholar 

  26. Remeseiro B, Penas M, Mosquera A, Novo J, Penedo MG, Yebra-Pimentel E. Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput Math Methods Med. 2012;2012:207315.

    Article  CAS  Google Scholar 

  27. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grewal, S.S., Grewal, S.P.S. (2021). Artificial Intelligence in Cornea and Refractive Surgery. In: Ichhpujani, P., Thakur, S. (eds) Artificial Intelligence and Ophthalmology. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0634-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0634-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0633-5

  • Online ISBN: 978-981-16-0634-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics