Skip to main content

Microbial Degradation of Lipids

  • Chapter
  • First Online:
Recent Advances in Microbial Degradation

Abstract

Lipids are biomolecules essential for the life. They play different important roles in the nature. Therefore, its degradation has been influenced by internal or external factors. Although lipids have shown be fundamental for life, its accumulation can be hazardous for the health. Recent anecdotal studies provide information about the degradation of lipids by enzymes produced by different microorganisms. Besides, microorganism as bacteria and fungi encompasses a wide range of species that can produce positive or negative effects on the environment. Some report highlighted the better benefits of enzymes derived from microorganisms than those derived from other species such as animals and vegetables. Additionally, external factors such as pH, temperatures, substrate, and metallic ions generate important roles during the lipolitic degradation. This chapter describes the biochemistry degradation of the lipids (fatty acids) and some examples related to microorganism species and their source producing fundamental enzymes as well as a wide range of applications approached into industrial, biotechnological, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas H, Hiol A, Deyris V, Coumeau L (2002) Isolation and characterization of an extracellular lipase from. Enzym Microb Technol 31(7):968–975

    Article  CAS  Google Scholar 

  • Abdelli F, Jardak M, Elloumi J, Stien D, Cherif S, Mnif S, Aifa S (2019) Antibacterial, anti-adherent and cytotoxic activities of surfactin(s) from a lipolytic strain Bacillus safensis F4. Biodegradation 30:287–3e00

    Article  CAS  PubMed  Google Scholar 

  • Aldred EM, Buck C, Vall K (2009) Lipids. In: Pharmacology. Churchill Livingstone/Elsevier, Edinburgh, Scotland, pp 73–80

    Chapter  Google Scholar 

  • Alford JA, Pierce DA, Suggs FG (1964) Activity of microbial lipases on natural fats and synthetic triglycerides. J Lipid Res 5(3):390–394

    Article  CAS  PubMed  Google Scholar 

  • Allen WV (1976) Biochemical aspects of lipid storage and utilization in animals. Am Zool 16(4):631–647. https://doi.org/10.1093/icb/16.4.631

    Article  CAS  Google Scholar 

  • Almyasheva NR, Shuktueva MI, Petrova DA, Kopitsyn DS, Kotelev MS, Vinokurov VA, Novikov AA (2018) Biodiesel fuel production by Aspergillus Niger whole-cell biocatalyst in optimized medium. Mycoscience 59(2):1–6

    Article  Google Scholar 

  • Arpingny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochemical Journal 343(1):177

    Article  Google Scholar 

  • Becker P (2010) Understanding and optimizing the microbial degradation of olive oil: a case study with the thermophilic bacterium Geobacillus Thermoleovorans IHI-91. In: Preedy VR (ed) Olives and olive oil in health and disease prevention. Elsevier Acad Press, Amsterdam, Netherlands, pp 377–386

    Chapter  Google Scholar 

  • Borda-Molina D, Montaña JS, Zambrano MM, Baena S (2017) Mining lipolytic enzymes in community DNA from high Andean soils using a targeted approach. Antonie Van Leeuwenhoek 110(8):1035–1051

    Article  CAS  PubMed  Google Scholar 

  • Cardenas F, de Castro MS, Sanchez-Montero JM, Sinisterra JV, Valmaseda M, Elson SW, Alvarez E (2001) Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme and Microbial Technology 28:145–154

    Article  CAS  PubMed  Google Scholar 

  • Carrazco-Palafox J, Rivera-Chavira BE, RamĂ­rez-Baca N, Manzanares--Papayanopoulos LI, Nevárez-MoorillĂłn GV (2018) Improved method for qualitative screening of lipolytic bacterial strains. MehodsX 5:68–74

    Article  Google Scholar 

  • Casas-Godoy L, Bordes F, Gasteazoro F, Marty A (2018) Lipases. In: Sandoval G (ed) An overview: methods and protocols. Lipases and phospholipases. Humana Press, New York, United States, pp 1–8

    Google Scholar 

  • Celligoi MAPC, Baldo C, De Melo MR, Gasparin FGM, Marques TA, De Barros M (2017) Lipase properties, functions and food applications. Microb Enzym Technol Food Appl:214–240

    Google Scholar 

  • Chauhan M, Chauhan RS, Garlapati VK (2013) Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability. Biomed Research International:374967

    Google Scholar 

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  CAS  PubMed  Google Scholar 

  • Chiofalo B, Lo Presti V (2012) Sampling techniques for the determination of volatile components in food of animal origin. In: Pawliszyn J (ed) Comprehensive sampling and sample preparation: analytical techniques for scientists, vol 4. Academic Press, Saint Louis

    Google Scholar 

  • Darnoko D, Cheryan M (2000) Kinetics of palm oil transesterification in a batch reactor. Journal of the American Oil Chemists Society 77(12)

    Google Scholar 

  • Dinasarapu AR, Saunders B, Ozerlat I, Azam K, Subramaniam S (2011) Signaling gateway molecule pages--a data model perspective. Bioinformatics 27(12):1736–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Soda M, Law J, Tsakalidou E, Kalantzopoulos A (1995) Lipolytic activity of cheese related microorganisms and its impact on cheese flavour. Developments in Food Science 37:1823–1847

    Article  Google Scholar 

  • Fickers P, Benetti P, WachĂ© Y, Marty A, Mauersberger S, Smit M, Nicaud J (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential. FEMS Yeast Research 5:527–543

    Article  CAS  PubMed  Google Scholar 

  • Furini G, Berger JS, Campos JAMVDSST, Germani JC (2018) Production of lipolytic enzymes by bacteria isolated from biological effluent treatment systems. An Acad Bras Cienc 90(3):2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Glass JE, Swift G (1989) Agricultural and synthetic polymers, biodegradation and utilization, Simposium Series 433. American Chemical Society, Washington, DC

    Google Scholar 

  • Gopinath SCB, Hilda A, Anbu P (2005) Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 46(2):119–126

    Article  CAS  Google Scholar 

  • Gopinath SCB, Anbu P, Lakshmipriya T, Hilda A (2013) Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Research International 154549:1–10

    Article  CAS  Google Scholar 

  • Gross RA, Kalra B, Kumar A (2001) Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Appl Microbiol Biotechnol 55(6):655–660

    Article  CAS  PubMed  Google Scholar 

  • Gu JD, Ford TE, Miltton DB, Mitchell R (2000) Microbial degradation and deterioration of polymeric materials. In: Revie RW (ed) Uhlig corrosion handbook. John Wiley & Sons, New York

    Google Scholar 

  • Gunasekaran V, Das D (2005) Lipase fermentation: progress and prospects. Indian J Biotechnol 4:437–445

    CAS  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical Properties. Appl Microbiol Biotechnol 64(6):763–781

    Article  CAS  PubMed  Google Scholar 

  • Gurr MI, Harwood JL (1991) Lipid biochemistry, 4th edn. Chapman & Hall, London

    Book  Google Scholar 

  • Haba E, Bresco O, Ferrer C, MarquĂ©s A, Busquets M, Manresa A (2000) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzym Microb Technol 26(1):40–44

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Hemachander C, Puvanakrishnan R (2000) Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Process Biochem 35(8):809–814

    Article  CAS  Google Scholar 

  • Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16(1):53–58

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  CAS  PubMed  Google Scholar 

  • Jambrak AR, Ĺ kevin D (2017) Lipids. In: Nutraceutical and functional food components. Academic Press, London, United Kingdom, pp 103–128

    Chapter  Google Scholar 

  • Jensen RG, DeJong FA, Clark RM (1983) Determination of lipase specificity. Lipids 18(3):239–252

    Article  CAS  PubMed  Google Scholar 

  • Jones PM, Bennett MJ (2017) Disorders of mitochondrial fatty acid β-oxidation. In: Garg U, Smith LD (eds) Biomarkers in inborn errors of metabolism. Elsevier Inc, United States, pp 87–101

    Chapter  Google Scholar 

  • Kennedy K (2007) Lipids. In: Enna JS (ed) xPharm: the comprehensive pharmacology reference. Elsevier, Amsterdam, Netherlands, pp 1–6

    Google Scholar 

  • Kenthorai Raman J, Abang S, Poncelet D, Chan E, Ravindra P (2008) Production of biodiesel using immobilized Lipase—A critical review. Crit Rev Biotechnol 28(4):253–264

    Article  CAS  Google Scholar 

  • Kresge N, Simoni RD, Hill RL (2010) JBC historical perspectives: Lipid biochemistry. J Biol Chem:1–2

    Google Scholar 

  • Le Borgne F, Demarquoy J (2012) Interaction between peroxisomes and mitochondria in fatty acid metabolism. Open J Mol Integr Physiol 2(1):27–33. https://doi.org/10.4236/ojmip.2012.21005

    Article  CAS  Google Scholar 

  • Lipids (2000) Lethbridge University, pp. 380–394

    Google Scholar 

  • Lotrakul P, Dharmsthiti S (1997) Purification and characterization of lipase from Aeromonas Sobria LP004. J Biotechnol 54(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Lucretia R, Tamara B, Roshini G (2014) Method optimization for denaturing gradient gel electrophoresis (DGGE) analysis of microflora from Eucalyptus sp. wood chips intended for pulping. Afr J Biotechnol 13(3):356–365

    Article  CAS  Google Scholar 

  • Malinauskas T (2008) Docking of fatty acids into the WIF domain of the human Wnt inhibitory Factor-1. Lipids 43(3):227–230

    Article  CAS  PubMed  Google Scholar 

  • Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY (2011) Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat Struct Mol Biol 18(8):886–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Man X, Sini M, Obbard JP (2009) Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy 1(2):115–125

    Article  CAS  Google Scholar 

  • Mandal A (2019) Lipid biological functions. News-Medical; Retrieved on July 13, 2020 from https://www.news-medical.net/life-sciences/Lipid-Biological-Functions.aspx

  • Mannaerts GP, Van Veldhoven PP, Casteels M (2000) Peroxisomal Lipid degradation via β- and α-oxidation in mammals. Cell Biochem Biophys 32:73–87. https://doi.org/10.1385/CBB:32:1-3:73

    Article  CAS  PubMed  Google Scholar 

  • Melser S, Lavie J, BĂ©nard G (2015) Mitochondrial degradation and energy metabolism. Biochim Biophys Acta Mol Cell Res 1853(10):2812–2821. https://doi.org/10.1016/j.bbamcr.2015.05.010

    Article  CAS  Google Scholar 

  • Menaa F, Menaa B, Kahn BA, Menaa A (2016) Trans fat and risks of cardiovascular diseases: facts or artifacts. In: Watson RR, Meester F (eds) Handbook of lipids in human function. AOCS Press, Arizona, United States, pp 23–25

    Google Scholar 

  • Muro E, Atilla-gokcumen GE, Eggert US, Bement W (2014) Lipids in cell biology: how can we understand them better ? Mol Biol Cell 25:1819–1823

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyedele SA, Ayodeji AO, Bamidele OS, Ajele JO, Fabunmi TB (2019) Enhanced lipolytic activity potential of mutant Bacillus niacini EMB-5 grown on palm oil mill effluent (POME) and biochemical characterization of purified lipase. Biotechnology 18:101017

    Google Scholar 

  • Peil G, Kuss AV, Rave A, Villareal J, Hernándes YML, Nascente PS (2016a) Bioprospecting of lipolytic microorganisms obtained from industrial effluents. An Acad Bras Cienc 88(3):1678–2690

    Google Scholar 

  • Peil GHS, Kuss AV, Rave AFG, Villareal JPV, Hernandes YML, Nascente P (2016b) Bioprospecting of lipolytic microorganisms obtained from industrial effluents. An Acad Bras CiĂŞnc 88(3):1769–1779

    Article  CAS  PubMed  Google Scholar 

  • Pinotti LM, Lacerda JX, Oliveira MM, Teixeira RD, Rodrigues C, Cassini STA (2017) Production of lipolytic enzymes using. Chemical Engineering Transactions 56:1897–1902

    Google Scholar 

  • Popoola B, Onilude A (2017) Microorganisms associated with vegetable oil polluted soil. Adv Microbiol 7(5):377–386

    Article  CAS  Google Scholar 

  • Prasad MP (2014) Production of lipase enzyme from Pseudomonas aeruginosa isolated. Int J Pure Appl Biosc 2(1):77–81

    Google Scholar 

  • Pratush A, Gupta A (2016) Bacterial lipases: production strategies and industrial applications bacterial lipases: production strategies and industrial applications. Microbiol Appl:64–83

    Google Scholar 

  • Qiao Y, Zhao X, Zhu J, Tu R, Dong L, Wang L, Du W (2018) Fluorescence-activated droplet sorting of lipolytic microorganisms using a compact optical system. Lab Chip 18:190–196

    Article  CAS  Google Scholar 

  • Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S (2018) Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiology 13(11):1301–1328

    Article  CAS  PubMed  Google Scholar 

  • Ramnath L, Sithole B, Govinden R (2017) Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. Biotechnology Reports 15:114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoylova YV, Sorokina KN, Piligaev AV, Parmon VN (2019) Application of bacterial thermostable lipolytic enzymes in the modern biotechnological processes: a review. Catal Ind 11(2):168–178

    Article  Google Scholar 

  • Sandi J, Mata-Araya I, Aguilar F (2020) Diversity of Lipase producing microorganisms from tropical oilseeds Elaeis guineensis, Ricinus communis, and Jatropha curcas L. from Costa Rica. Curr Microbiol 77(6):1–10

    Article  CAS  Google Scholar 

  • Saraswat R, Verma V, Sistla S, Bhushan I (2017) Evaluation of alkali and thermotolerant lipase from an indigenous isolated Bacillus strain for detergent formulation. Electron J Biotechnol 30:33–38

    Article  CAS  Google Scholar 

  • Saxena R, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Sayali P, Satpute S (2013) Microbial esterases: an overview. International Journal of Current Microbiology and Applied Science 2(7):135–146

    Google Scholar 

  • Scholante Delabary G, da Silva MC, da Silva CS, Baratieri LZ, de Melo TM, Stramosk CA, de Souza Lima AO, da Silva MAC (2020) Influence of temperature and culture media on growth and lipolytic activity of deep-sea Halomonas sulfidaeris LAMA 838 and Marinobacter excellens LAMA 842. Ocean and Coastal Research 68:2675–2824

    Google Scholar 

  • Shelley AW, Deeth HC, MacRae IC (1987) Review of methods of enumeration, detection and isolation of lipolytic microorganisms with special reference to dairy applications. J Microbiol Methods 6(3):123–137

    Article  Google Scholar 

  • Snajdr PBJ (2007) Temperature effects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia Microbiol 52:498–502

    Article  CAS  Google Scholar 

  • Stuer W, Jaeger KE, Winkler U (1986) Purification of extracellular lipase from Pseudomonas aeruginosa. Journal of Bacteriology 168(3):1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh R, Pandiaraj M, Sankaralingam M, Giribabu K (2019) Graphene–metal chalcogenide modified electrochemical sensors. In: Graphene-based electrochemical sensors for biomolecules. Elsevier, New Delhi, India, pp 139–153

    Chapter  Google Scholar 

  • Thompson TE (2021) Lipid. Encyclopaedia Britannica, Virginia, United States. Retrieved 5 September 2020, from https://www.britannica.com/science/lipid

  • Tsouko E, Papanikolaou S, Koutinas AA (2016) Production of fuels from microbial oil using oleaginous microorganisms. In: Luque R, Lin CSK, Wilson K, Clark J (eds) Handbook of biofuels production. Woodhead Publishing, Amsterdam Netherlands, pp 201–236

    Google Scholar 

  • Ur Rahman U, Khan MI, Sohaib M, Sahar A, Ishaq A (2016) Exploiting microorganisms to develop improved functional meat sausages: a review. Food Rev Intl 33(2):195–215

    Article  Google Scholar 

  • Urbanek AK, MiroĹ„czuk AM, GarcĂ­a-MartĂ­n A, Saborido A, de la Mata I, Arroyo M (2019) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Proteins and Proteonics 1868(2):140315

    Article  CAS  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opin Plant Biol 39(7):329–336

    Article  CAS  Google Scholar 

  • Wiseman A (1977) Handbook of enzyme biotechnology: edited by Alan Wiseman. Ellis Horwood Ltd., Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moises Bustamante-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bustamante-Torres, M., Romero-Fierro, D., Estrella-Nuñez, J., Bucio, E. (2021). Microbial Degradation of Lipids. In: Inamuddin, .., Ahamed, M.I., Prasad, R. (eds) Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0518-5_9

Download citation

Publish with us

Policies and ethics