Skip to main content

Electrochromic Properties of α-MoO3 Nanorods Fabricated by Hydrothermal Synthesis

  • Conference paper
  • First Online:
Advances in Graphic Communication, Printing and Packaging Technology and Materials

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 754))

  • 1443 Accesses

Abstract

In this work, we propose the facile controlled hydrothermal synthesis of α-MoO3 nanorods at a mild temperature. The microstructure and controlled morphology of the as-obtained product can be tailored by altering growth parameters. The average diameter of the as-obtained nanorods is about 200 nm. Electrochromic properties and capacitor performance of the as-synthesized nanorods were investigated. The results demonstrate electrochromic properties with high corresponding optical modulation range of 47% at a wavelength of 550 nm, good cyclic stability and fast response time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang L, Dong ZH, Wang ZG (2013) Layered α‐Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv Funct Mater 23:2758–2764

    Google Scholar 

  2. Xiao Y, Liu S, Li F (2012) 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Func Mater 22:4052–4059

    Article  Google Scholar 

  3. Chen X, Lin H, Deng J (2014) Electrochromic fiber-shaped supercapacitors. Adv Mater 26:8126–8132

    Article  Google Scholar 

  4. Xiao X, Ding T, Yuan L (2012) WO3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater 2:1328–1332

    Article  Google Scholar 

  5. Chang J, Jin M, Yao F (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083

    Google Scholar 

  6. Tang W, Liu L, Tian S (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060

    Article  Google Scholar 

  7. Patil RS, Uplane MD, Patil PS (2008) Electrosynthesis of electrochromic molybdenum oxide thin films with rod-like features. Int J Electrochem Sci 3:259–265

    Google Scholar 

  8. Mahajan SS, Mujawar SH, Shinde PS (2019) Rapid and sensitive electrochemical monitoring of tyrosine using NiO nanoparticles modified graphite screen printed electrode. Int J Electrochem Sci 14:1556

    Google Scholar 

  9. Mahajan SS, Mujawar SH, Shinde PS (2008) Structural, optical and electrochromic properties of Nb-doped MoO3 thin films. Appl Surf Sci 254:5895–5898

    Article  Google Scholar 

  10. Lian H, Hou Z, Shang M, Geng D, Zhang Y, Lin J (2013) Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy 57:270–283

    Article  Google Scholar 

  11. Zheng L, Xu Y, Jin D (2009) Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem Mater 21:5681–5690

    Article  Google Scholar 

  12. Golozar M, Chien K, Coyle TW (2012) Orthorhombic α-MoO3 coatings with lath-shaped morphology developed by SPPS: applications to super-capacitors. J Therm Spray Technol 21:469–479

    Article  Google Scholar 

  13. Hanlon D, Backes C, Higgins TM, Hughes MO, Neill A, King P, Coleman JN (2014) Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chem Mater 26:1751–1763

    Google Scholar 

  14. Phuruangrat A, Ham DJ, Thongtem S, Lee JS (2009) Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction. Electrochem Commun 11:1740–1743

    Article  Google Scholar 

  15. Sinaim H, Ham DJ, Lee JS, Phuruangrat A, Thongtem S, Thongtem T (2012) Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. J Alloy Compd 516:172–178

    Article  Google Scholar 

  16. Taurino AM, Forleo A, Francioso L, Siciliano P, Stalder M, Nesper R (2006) Synthesis, electrical characterization, and gas sensing properties of molybdenum oxide nanorods. Appl Phys Lett 88:152111

    Article  Google Scholar 

  17. Yu J, Ippolito SJ, Shafiei M, Wlodarski DW, Kalantar-Zadeh K (2009) Reverse biased Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors. Appl Phys Lett 94:013504

    Article  Google Scholar 

  18. Kim WS, Kim HC, Hong SH (2010) Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method. J Nanopart Res 12:1889–1896

    Article  Google Scholar 

  19. Xing LL, Yuan S, Chen ZH, Chen YJ, Xue XY (2011) Enhanced gas sensing performance of SnO2/α-MoO3 heterostructure nanobelts. Nanotechnology 22:225502

    Article  Google Scholar 

  20. Zhou L, Yang L, Yuan P, Zou J, Wu Y, Yu C (2010) α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J Phys Chem C 114:21868–21872

    Article  Google Scholar 

  21. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  Google Scholar 

  22. Sen UK, Mitra S (2012) Electrochemical activity of α-MoO3 nano-belts as lithium-ion battery cathode. RSC Adv 2:11123–11131

    Article  Google Scholar 

  23. Meduri P, Clark E, Kim JH, Dayalan E, Sumanasekera GU, Sunkara MK (2012) MoO3–x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett 12:1784–1788

    Article  Google Scholar 

  24. Mohan VM, Bin H, Chen W (2010) Enhancement of electrochemical properties of MoO3 nanobelts electrode using PEG as surfactant for lithium battery. J Solid State Electrochem 14:1769–1775

    Article  Google Scholar 

  25. Zheng L, Xu Y, Jin D, Xie Y (2009) Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem Mater 21:5681–5690

    Article  Google Scholar 

  26. Cai L, Rao PM, Zheng X (2011) Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays. Nano Lett 11:872–877

    Article  Google Scholar 

  27. Shakir I, Shahid M, Nadeem M, Kang DJ (2012) Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochim Acta 72:134–137

    Article  Google Scholar 

  28. Aravinda LS, Nagaraja KK, Bhat KU, Bhat BR (2013) Magnetron sputtered MoO3/carbon nanotube composite electrodes for electrochemical supercapacitor. J Electroanal Chem 699:28–32

    Article  Google Scholar 

  29. Bai S, Chen S, Chen L, Zhang K, Luo R, Li D, Liu CC (2012) Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties. Sens Actuators B: Chem 174:51–58

    Article  Google Scholar 

  30. Shen Y, Xiao Y, Yan P, Yang Y, Hu F, Li Z (2014) Hydrothermal deposition and the photochromic properties of molybdenum oxide hydrate (MoO3⋅(H2O)0.69) films induced by D, L-malic acid. J Alloys Comp 588:676–680

    Google Scholar 

  31. Chen X, Lei W, Liu D, Hao J, Cui Q, Zou G (2009) Synthesis and characterization of hexagonal and truncated hexagonal shaped MoO3 nanoplates. J Phys Chem C 113:21582–21585

    Article  Google Scholar 

  32. Ivanova T, Gesheva K, Hamelmann F (2004) Optical and electrochromic properties of CVD mixed MoO3-WO3 thin films. Vacuum 76:195–198

    Article  Google Scholar 

  33. Lee SH, Seong MJ, Tracy CE, Mascarenhas A, Pitts JR, Deb SK (2002) Raman spectroscopic studies of electrochromic a-MoO3 thin films. Solid State Ionics 147:129–133

    Article  Google Scholar 

  34. Qi K, Yang J, Fu J, Wang G, Zhu L, Liu G, Zheng W (2013) Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties. Cryst Eng Comm 15:6729–6735

    Article  Google Scholar 

  35. Jia B, Gao L (2008) Growth of well-defined cubic hematite single crystals: oriented aggregation and ostwald ripening. Cryst Growth Des 8:1372–1376

    Article  Google Scholar 

  36. Du N, Zhang H, Chen B (2007) Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature. J Phys Chem C 111:12677–12680

    Google Scholar 

  37. Cao SW, Zhu YJ (2008) Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures. J Phys Chem C 112:12149–12156

    Google Scholar 

Download references

Acknowledgements

This research is supported by Foundations of Heilongjiang Educational Committee (No. 18XN069 and No. 18XN089). We thank the Young scientists foundation from Harbin University of Commerce, China (No. 17XN018, 2019CX28) and the Young scientific research item of Harbin University of Commerce, Heilongjiang province, China (No. 2019DS084) and the National Natural Science Foundation of China (No. 52002099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Liu, Z., Cao, W. (2021). Electrochromic Properties of α-MoO3 Nanorods Fabricated by Hydrothermal Synthesis. In: Zhao, P., Ye, Z., Xu, M., Yang, L., Zhang, L., Zhu, R. (eds) Advances in Graphic Communication, Printing and Packaging Technology and Materials. Lecture Notes in Electrical Engineering, vol 754. Springer, Singapore. https://doi.org/10.1007/978-981-16-0503-1_113

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0503-1_113

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0502-4

  • Online ISBN: 978-981-16-0503-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics