Skip to main content

An Overview of XLPE-Based Blends and Nanocomposites

  • Chapter
  • First Online:
Crosslinkable Polyethylene Based Blends and Nanocomposites

Abstract

Polymeric matrix can be reinforced with fillers and be capable of accomplishing a promising material with improved physicochemical properties than the pristine polymeric materials. This concept is well equipped in nanocomposites or blends of cross-linked polyethylene (XLPE). This chapter is a comprehensive study of XLPE/nanocomposites and XLPE blends with exclusive highlighting on the properties and potential applications. The implementation of XLPE/nanocomposites is more significant in insulation cable. These insulation materials can reduce some defects like electrical treeing, water treeing, partial discharges, etc., that are challenging toward XLPE. The important nanofillers and polymers used in XLPE/nanocomposites or XLPE/polymer blends and its outcome and some important patents in this category are figured out here. This chapter concludes with the challenges and outlook of XLPE/nanocomposites and XLPE/polymer blends in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleşa I, Noţingher PV, Stancu C et al (2018) Polyethylene nanocomposites for power cable insulations. Polymers (Basel) 11. https://doi.org/10.3390/polym11010024

    Google Scholar 

  2. Stahl PO, Sederel WL (1996) Polymer blends

    Google Scholar 

  3. Thabet A, Mobarak YA, Bakry M (2011) A review of nano-fillers effects on industrial polymers and their characteristics

    Google Scholar 

  4. Utracki LA (2014) Polyethylenes and their blends. Polymer blends handbook. Springer, Netherlands, pp 1559–1732

    Google Scholar 

  5. Thomas SP, Thomas SP, Stephen R et al (2007) Rubber nanocomposites : preparation, properties and applications polymer nanocomposites: preparation properties and

    Google Scholar 

  6. Akram S, Nazir MT, Castellon J et al (2019) Preparation and distinguish dielectric properties of multi-layer nanoparticles-based polyimide films. Mater Res Express 6:125092. https://doi.org/10.1088/2053-1591/ab5c40

    Article  CAS  Google Scholar 

  7. Akram S, Castellon J, Agnel S et al (2020) Multilayer polyimide nanocomposite films synthesis process optimization impact on nanoparticles dispersion and their dielectric performance. J Appl Polym Sci 49715. https://doi.org/10.1002/app.49715

    Google Scholar 

  8. Akram S, Castellon J, Agnel S et al (2019) Impact of nanocomposite thin layer on nanoparticles dispersion and their dielectric properties. In: Annual report—conference on electrical insulation and dielectric phenomena, CEIDP, pp 336–339. Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

  9. Kochetov R, Korobko AV, Andritsch T et al (2011) Thermal and electrical properties of nanocomposites, including material properties

    Google Scholar 

  10. Densley J (2001) Ageing mechanisms and diagnostics for power cables—an overview. IEEE Electr Insul Mag 17:14–22. https://doi.org/10.1109/57.901613

    Article  Google Scholar 

  11. Conlan S, Courtney J, Looby T. Accelerated aging test on multiple XLPE MV cables simultaneously to induce water trees

    Google Scholar 

  12. Iec (2000) Iec international 60270 standard high-voltage test techniques-partial discharge measurements Iec international 60270 standard high-voltage test techniques-partial discharge measurements including photocopying and microfilm, without permission in writing f. Iec 60270:2000

    Google Scholar 

  13. Raymond W, Illias H, Measurement HM (2015) Undefined partial discharge classifications: review of recent progress. Elsevier

    Google Scholar 

  14. Thomas J, Joseph B, Jose JP et al (2019) Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind Eng Chem Res 58:20863–20879

    Article  CAS  Google Scholar 

  15. Hui L, Smith R, Nelson JK, Schadler LS (2009) Electrochemical treeing in XLPE/silica nanocomposites. In: Annual report—conference on electrical insulation and dielectric phenomena, CEIDP, pp 511–514

    Google Scholar 

  16. Zhang L, Zhou Y, Cui X et al (2014) Space charge behavior of XLPE/SiO2 nanocomposites with nanoparticle surface modification. In: EIC 2014—Proceedings of the 32nd electrical insulation conference. IEEE Computer Society, pp 402–406

    Google Scholar 

  17. Zhang L, Zhou Y, Cui X et al (2014) Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21:1554–1564. https://doi.org/10.1109/TDEI.2014.004361

    Article  CAS  Google Scholar 

  18. Crine JP (2005) Influence of electro-mechanical stress on electrical properties of dielectric polymers. IEEE Trans Dielectr Electr Insul 12:791–800. https://doi.org/10.1109/TDEI.2005.1511104

    Article  CAS  Google Scholar 

  19. Crine JP (2005) On the interpretation of some electrical aging and relaxation phenomena in solid dielectrics. IEEE Trans Dielectr Electr Insul 12:1089–1107. https://doi.org/10.1109/TDEI.2005.1561789

    Article  CAS  Google Scholar 

  20. Han B, Wang X, Sun Z et al (2013) Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite. Appl Phys Lett 102:012902. https://doi.org/10.1063/1.4773918

    Article  CAS  Google Scholar 

  21. Tanaka T (2006) Promising characteristics of nanocomposite dielectrics. In: Proceedings of the IEEE international conference on properties and applications of dielectric materials. Institute of Electrical and Electronics Engineers Inc., pp 12–22

    Google Scholar 

  22. Zhang L, Khani MM, Krentz TM et al (2017) Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO2 nanoparticles. Appl Phys Lett 110:132903. https://doi.org/10.1063/1.4979107

    Article  CAS  Google Scholar 

  23. Wang Y, Wang C, Testing KX-P (2016) Undefined investigation of the electrical properties of XLPE/SiC nanocomposites. Elsevier

    Google Scholar 

  24. Habib MA, Nasart LS, Sharkawy RM (2017) Improvement the electrical performance of cross-linked polyethylene high voltage cables. In: 2016 18th International middle-east power systems conference, MEPCON 2016—proceedings. Institute of Electrical and Electronics Engineers Inc., pp 21–25

    Google Scholar 

  25. Kim YM, Cha YK, Lim KJ et al (2012) Electrical insulation evaluation of crosslinked polyethylene nanocomposite blended with ZnO. In: Proceedings of 2012 IEEE international conference on condition monitoring and diagnosis, CMD 2012, pp 1242–1245

    Google Scholar 

  26. Jose JP, Mhetar V, Culligan S, Thomas S (2013) Cross linked polyethylene/TiO2 nanocomposites: morphology, polymer/filler interaction, mechanics and thermal properties. Sci Adv Mater 5:385–397. https://doi.org/10.1166/sam.2013.1469

    Article  CAS  Google Scholar 

  27. Jose JP, Thomas S (2014) XLPE based Al2O3-clay binary and ternary hybrid nanocomposites: self-assembly of nanoscale hybrid fillers, polymer chain confinement and transport characteristics. Phys Chem Chem Phys 16:20190–20201. https://doi.org/10.1039/c4cp03403a

    Article  CAS  Google Scholar 

  28. Nagao M, Watanabe S, Murakami Y et al (2008) Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites. In: Proceedings of the international symposium on electrical insulating materials, pp 483–486

    Google Scholar 

  29. Murata Y, Goshowaki M, Reddy CC et al (2008) Investigation of space charge distribution and volume resistivity of XLPE/MgO nanocomposite material under DC voltage application. In: Proceedings of the international symposium on electrical insulating materials, pp 502–505

    Google Scholar 

  30. Li X, Xu M, Zhang K et al (2014) Influence of organic intercalants on the morphology and dielectric properties of XLPE/montmorillonite nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 21:1705–1717. https://doi.org/10.1109/TDEI.2014.004317

    Article  CAS  Google Scholar 

  31. Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46

    Article  CAS  Google Scholar 

  32. Hu W, Zhan J, Wang X et al (2014) Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene. Ind Eng Chem Res 53:3073–3083. https://doi.org/10.1021/ie4026743

    Article  CAS  Google Scholar 

  33. Tripathi SN, Rao GSS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7:23615–23632

    Article  CAS  Google Scholar 

  34. Jose JP, Thomas S (2014) Alumina-clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties. In: Physical chemistry chemical physics. Royal Society of Chemistry, pp 14730–14740

    Google Scholar 

  35. Jose JP, Ahmad Z, Thomas S (2014) Hybrid nanoparticle-based XLPE/SiO2/TiO2 and XLPE/SiO2 nanocomposites: nanoscale hybrid assembling, mechanics and thermal properties. In: InCIEC 2013, pp 895–902. Springer, Singapore

    Google Scholar 

  36. Marcilla A, Garcia-Quesada JC, Hernandez J et al (2005) Study of polyethylene crosslinking with polybutadiene as coagent. Polym Test 24:925–931. https://doi.org/10.1016/j.polymertesting.2005.06.002

    Article  CAS  Google Scholar 

  37. Kumara S, Xu X, Hammarström T et al (2020) Electrical characterization of a new crosslinked copolymer blend for DC cable insulation. Energies 13. https://doi.org/10.3390/en13061434

    Google Scholar 

  38. Azizi H, Barzin J, Morshedian J (2007) Silane crosslinking of polyethylene: the effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE. Express Polym Lett 1:378–384. https://doi.org/10.3144/expresspolymlett.2007.53

    Article  CAS  Google Scholar 

  39. Tanaka T, Imai T (2013) Advances in nanodielectric materials over the past 50 years. IEEE Electr Insul Mag 29:10–23. https://doi.org/10.1109/MEI.2013.6410535

    Article  Google Scholar 

  40. Lee JS, Cho KC, Ku KH et al (2012) Recyclable insulation material based on polyethylene for power cable. In: Proceedings of 2012 IEEE international conference on condition monitoring and diagnosis, CMD 2012, pp 88–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, J., Thomas, M.E., Thomas, S. (2021). An Overview of XLPE-Based Blends and Nanocomposites. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene Based Blends and Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0486-7_1

Download citation

Publish with us

Policies and ethics