Skip to main content

Biomedical Engineering in Cancer Diagnosis and Therapy

  • Chapter
  • First Online:
Skin Cancer: Pathogenesis and Diagnosis

Abstract

This chapter crosses the divide between bioengineering and cancer biology. It relies on a “bottom-up” view of the connections between molecules, cells, tissues, organs, animals, and health and functions—all within the framework of bioengineering. The chapters cover the key approaches, innovations, and devices that could better detect cancer faster and more helpful therapies. The chapter adopts an interdisciplinary approach that is suitable for those who need knowledge on design strategies and devices that assist with their care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding L, Bond AM, Zhai J, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    Article  CAS  PubMed  Google Scholar 

  2. Chou SF, Hsu WL, Hwang JM, Chen CY (2002) Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on a quartz crystal microbalance. Anal Chim Acta 453(2):181–189

    Article  CAS  Google Scholar 

  3. Su L, Zou L, Fong CC, Wong WL, Wei F, Wong KY et al (2013) Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens Bioelectron 46:155–161

    Article  CAS  PubMed  Google Scholar 

  4. López-Cobo S, Campos-Silva C, Moyano A, Oliveira-Rodríguez M, Paschen A, Yáñez-Mó M et al (2018) Immunoassays for scarce tumour-antigens in exosomes: detection of the human NKG2D-ligand, MICA, in tetraspanin-containing nanovesicles from melanoma. J Nanobiotechnol 16(1):47

    Article  CAS  Google Scholar 

  5. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W (2017) Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed 56(39):11916–11920

    Article  CAS  Google Scholar 

  6. Chen X, Lan J, Liu Y, Li L, Yan L, Xia Y et al (2018) A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron 102:582–588

    Article  CAS  PubMed  Google Scholar 

  7. He F, Wang J, Yin BC, Ye BC (2018) Quantification of exosome based on a copper-mediated signal amplification strategy. Anal Chem 90(13):8072–8079

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J (2018) DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta 184:219–226

    Article  CAS  PubMed  Google Scholar 

  9. Zhang P, He M, Zeng Y (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16(16):3033–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coutinho C, Somoza Á (2019) MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 411(9):1807–1824

    Article  CAS  PubMed  Google Scholar 

  11. Heuer-Jungemann A, Harimech PK, Brown T, Kanaras AG (2013) Gold nanoparticles and fluorescently-labelled DNA as a platform for biological sensing. Nanoscale 5(20):9503–9510

    Article  CAS  PubMed  Google Scholar 

  12. Groebe K, Mueller-Klieser W (1996) On the relation between size of necrosis and diameter of tumor spheroids. Int J Radiat Oncol Biol Phys 34(2):395–401

    Article  CAS  PubMed  Google Scholar 

  13. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5(16):1779–1787

    Article  CAS  PubMed  Google Scholar 

  14. Meneses CT, Flores WH, Sotero AP, Tamura E, Garcia F, Sasaki JM (2006) In situ system for X-ray absorption spectroscopy experiments to investigate nanoparticle crystallization. J Synchrotron Radiat 13(6):468–470

    Article  CAS  PubMed  Google Scholar 

  15. Hsiang D, Shah N, Yu N, Su MY, Cerussi A, Butler J et al (2005) Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer. Technol Cancer Res Treat 4(5):549–558

    Article  PubMed  Google Scholar 

  16. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36(10):783–790

    Article  CAS  PubMed  Google Scholar 

  17. Nioka S, Miwa M, Orel S, Shnall M, Haida M, Zhao S, Chance B (1994) Optical imaging of human breast cancer. In: Oxygen transport to tissue XVI. Springer, Boston, MA, pp 171–179

    Chapter  Google Scholar 

  18. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11(8):2785–2808

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A (2006) Standardized uptake values of normal breast tissue with 2-deoxy-2-[F-18] fluoro-D-glucose positron emission tomography: variations with age, breast density, and menopausal status. Mol Imaging Biol 8(6):355–362

    Article  PubMed  Google Scholar 

  20. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2(4):15353500200303142

    Article  Google Scholar 

  21. Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 63(22):7870–7875

    CAS  PubMed  Google Scholar 

  22. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy— mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  23. Parmar H et al (1988) Response to D-TRP-6-Luteinising hormone-releasing hormone (decapeptyl) microcapsules in advanced ovarian-cancer. Br Med J 296(6631):1229

    Article  CAS  Google Scholar 

  24. Small EJ et al (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18(23):3894–3903

    Article  CAS  PubMed  Google Scholar 

  25. Maher J, Davies ET (2004) Targeting cytotoxic T lymphocytes for cancer immunotherapy. Br J Cancer 91(5):817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capitini CM, Mackall CL, Wayne AS (2010) Immune-based therapeutics for pediatric cancer. Exp Opin Biol Ther 10(2):163–178

    Article  CAS  Google Scholar 

  27. Huye LE, Dotti G (2010) Designing T cells for cancer immunotherapy. Discov Med 9(47):297–303

    PubMed  PubMed Central  Google Scholar 

  28. Chekmasova AA, Brentjens RJ (2010) Adoptive T cell immunotherapy strategies for the treatment of patients with ovarian cancer. Discov Med 9(44):62–70

    PubMed  Google Scholar 

  29. Jena B, Dotti G, Cooper LJ (2010) Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 116(7):1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li WA, Mooney DJ (2013) Materials based tumor immunotherapy vaccines. Curr Opin Immunol 25(2):238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo C et al (2013) Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res 119:421–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Z, Ott PA, Wu CJ (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18:168

    Article  CAS  PubMed  Google Scholar 

  33. Melero I et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11:509

    Article  CAS  PubMed  Google Scholar 

  34. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  35. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davila ML et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra225

    Article  CAS  Google Scholar 

  37. Ma L et al (2019) Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365(6449):162–168. https://doi.org/10.1126/science.aav8692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Teng F, Meng X, Kong L, Yu J (2018) Progress and challenges of predictive biomarkers of anti PD-1/PDL1 immunotherapy: a systematic review. Cancer Lett 414:166–173

    Article  CAS  PubMed  Google Scholar 

  39. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Topalian SL et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv324

    Article  CAS  Google Scholar 

  43. Intuitive Surgical Inc (2018) Q4 2018 preliminary financial data tables, Available from: https://isrg.gcsweb.com/static-files/3a12c816-6637-4a3a-bfef-247a60c1fbd7

  44. Ramsay C, Pickard R, Robertson C, Close A, Vale L, Armstrong N et al (2012) Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol Assess 16:1–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Estabridis HM, Jana A, Nain A, Odde DJ (2018) Cell migration in 1D and 2D nanofiber microenvironments. Ann Biomed Eng 46:392–403

    Article  PubMed  Google Scholar 

  46. Tung Y-C et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478

    Article  CAS  PubMed  Google Scholar 

  47. Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756

    Article  PubMed  Google Scholar 

  48. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  49. Polacheck WJ, Li R, Uzel SGM, Kamm RD (2013) Microfluidic platforms for mechanobiology. Lab Chip 13:2252–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2:584

    Article  CAS  Google Scholar 

  51. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boussommier-calleja A, Li R, Chen MB, Wong SC, Kamm RD (2016) Microfluidics: a new tool for modeling cancer-immune interactions. Trends Cancer 2:6–19

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wendt D, Riboldi SA, Cioffi M, Martin I (2009) Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv Mater 21:3352–3367

    Article  CAS  PubMed  Google Scholar 

  54. Guller AE, Grebenyuk PN, Shekhter AB, Zvyagin AV, Deyev SM (2016) Bioreactor-based tumor tissue engineering. Acta Nat 8:44–58

    Article  CAS  Google Scholar 

  55. La Vecchia C, Rota M, Malvezzi M, Negri E (2015) Potential for improvement in cancer management: reducing mortality in the European Union. Oncologist 20(5):495

    Article  PubMed  PubMed Central  Google Scholar 

  56. Siegel RL, Fedewa SA, Miller KD, Goding-Sauer A, Pinheiro PS, Martinez-Tyson D, Jemal A (2015) Cancer statistics for hispanics/latinos, 2015. CA Cancer J Clin 65(6):457–480

    Article  PubMed  Google Scholar 

  57. Smittenaar CR, Petersen KA, Stewart K, Moitt N (2016) Cancer incidence and mortality projections in the UK until 2035. Br J Cancer 115(9):1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malik SH, Lone TA, Quadri SM (2016) Imaging techniques for cancer diagnosis and scope for enhancement. Int J Image Graphics Signal Process 8(5):83

    Article  Google Scholar 

  59. Pradhan S et al (2017) A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials 115:141–154

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jose, J.V., Maurya, R.P.P. (2021). Biomedical Engineering in Cancer Diagnosis and Therapy. In: Dwivedi, A., Tripathi, A., Ray, R.S., Singh, A.K. (eds) Skin Cancer: Pathogenesis and Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-16-0364-8_10

Download citation

Publish with us

Policies and ethics