Skip to main content

Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy

  • Chapter
  • First Online:
Antiviral Drug Discovery and Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1322))

Abstract

Posttranslational modifications of targeted substrates alter their cellular fate. Ubiquitin is a highly conserved and ubiquitous covalent modifier protein that tags substrates with a single molecule or with a polyubiquitin chain. Monoubiquitination affects trafficking and signaling patterns of modified proteins. In contrast, polyubiquitination, particularly K48-linked polyubiquitination, targets the protein for degradation by the Ubiquitin-Proteasome System (UPS) resulting in a committed fate through irreversible inactivation of substrate. Given the diversity of cellular functions impacted by ubiquitination, it is no surprise that the wily pathogenic viruses have co-opted the UPS in myriad ways to ensure their survival. In this review, I describe viral exploitation of nondegradative ubiquitin signaling pathways to effect entry, replication, and egress. Additionally, viruses also harness the UPS to degrade antiviral cellular host factors. Finally, I describe how we can exploit the same proteolytic machinery to enable PROTACs (Proteolysis-Targeting Chimeras) to degrade essential viral proteins. Successful implementation of this modality will add to the arsenal of emerging antiviral therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AdV:

Adenovirus

ARIH2:

Protein Ariadne-2 homolog

ART:

Arrestin-related trafficking proteins

bTRCP:

Beta-transducin repeat containing

CARDs:

Caspase activation and recruitment domains

cGAMP:

Cyclic guanosine monophosphate–adenosine monophosphate

cGAS:

Cyclic GMP-AMP synthase

CRBN:

Cereblon

CRL:

Cullin-RING ligase

DDB1:

DNA damage-binding protein 1

DUBs:

Deubiquitinases

EBOV:

Ebola virus

EBV:

Epstein barr virus

ESCRT:

Endosomal sorting complex required for transport

HBV:

Hepatitis B virus

HCMV:

Human cytomegalovirus

HDAC6:

Histone deacetylase 6

HECT:

Homologous to E6-AP Carboxyl Terminus

HEXIM1:

Hexamethylene bisacetamide inducible 1

HIV-1:

Human immunodeficiency virus type 1

HPV:

Human papillomavirus

HRSV:

Human respiratory syncytial virus

HSV-1:

Herpes simplex virus 1

HTLV-1:

Human T lymphotropic virus type 1

IAV:

Influenza A virus

IFN:

Interferon

IMiD:

Immunomodulatory

IRF3:

IFN-regulatory factor 3

ISG15:

Interferon stimulated gene 15

KSHV:

Kaposi’s Sarcoma herpes virus

LUBAC:

Linear Ub chain assembly complex

MAVS:

Mitochondrial antiviral signaling protein

MHC:

Major histocompatibility complex

NEDD4:

Neural precursor cell expressed developmentally down-regulated

PAMPs:

Pathogen-associated molecular patterns

PLPro:

Papain-like protease

PML-NB:

Promyelocytic Leukemia Protein-Nuclear Body

PPIs:

Protein:protein interaction interface

PROTACs:

Proteolysis targeting chimeras

PRR:

Pattern recognition receptors

RBR:

RING-between-ring

RIG-1:

Retinoic acid-inducible gene 1

RING:

Really interesting new gene

RNP:

Ribonucleoprotein particle

RSV:

Rous sarcoma virus

SARS-CoV:

Severe acute respiratory syndrome coronavirus

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SM:

Small molecule

STAT:

Signal transducer and activator of transcription

STING:

Stimulator of interferon genes

TAK1:

TGFb-activated kinase 1

TBK1:

TANK-binding kinase-1

TNF:

Tumor necrosis factor

TRAF:

TNF receptor-associated factor

TRIM:

Tripartite motif

Ub:

Ubiquitin

UPS:

Ubiquitin-proteasome system

VHL:

Von Hippel Lindau

VIF:

Viral infectivity factor

ZIKV:

Zika virus

References

  1. Burroughs AM, Balaji S, Iyer LM et al (2007) Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72

    Article  CAS  PubMed  Google Scholar 

  3. Bard JM, Goodall EA, Greene ER et al (2018) Structure and function of the 26S proteasome. Annu Rev Biochem 87:697–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dittmar G, Winklhofer KF (2019) Linear ubiquitin chains: cellular functions and strategies for detection and quantification. Front Chem 7:915

    Article  CAS  PubMed  Google Scholar 

  5. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  6. Stewart MD, Ritterhoff T, Klevit RE et al (2016) E2 enzymes: more than just middle men. Cell Res 26:423–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157

    Article  CAS  PubMed  Google Scholar 

  8. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409

    Article  CAS  PubMed  Google Scholar 

  9. Weber J, Polo S, Maspero E (2019) HECT E3 ligases: a tale with multiple facets. Front Physiol 10:370

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varshavsky A (1991) Naming a targeting signal. Cell 64:13–15

    Article  CAS  PubMed  Google Scholar 

  11. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  12. Lydeard JR, Schulman BA, Harper JW (2013) Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep 14:1050–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baek K, Krist DT, Prabu JR et al (2020) NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 578:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cotton TR, Lechtenberg BC (2020) Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Biochem Soc Trans 48:1737–1750

    Google Scholar 

  15. Hatakeyama S (2017) TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci 42:297–311

    Article  CAS  PubMed  Google Scholar 

  16. Hage A, Rajsbaum R (2019) To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system. J Gen Virol 100:1641–1662

    Article  PubMed  PubMed Central  Google Scholar 

  17. Park HH (2018) Structure of TRAF family: current understanding of receptor recognition. Front Immunol 9:1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Haakonsen DL, Rape M (2019) Branching out: improved signaling by heterotypic ubiquitin chains. Trends Cell Biol 29:704–716

    Article  CAS  PubMed  Google Scholar 

  19. Clague MJ, Urbe S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20:338–352

    Article  CAS  PubMed  Google Scholar 

  20. Verma R, Aravind L, Oania R et al (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615

    Article  CAS  PubMed  Google Scholar 

  21. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407

    Article  CAS  PubMed  Google Scholar 

  22. Wertz IE, Murray JM (2019) Structurally-defined deubiquitinase inhibitors provide opportunities to investigate disease mechanisms. Drug Discov Today Technol 31:109–123

    Article  PubMed  Google Scholar 

  23. Wimmer P, Schreiner S, Dobner T (2012) Human pathogens and the host cell SUMOylation system. J Virol 86:642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El Motiam A, Vidal S, Seoane R et al (2020) SUMO and cytoplasmic RNA viruses: from enemies to best friends. Adv Exp Med Biol 1233:263–277

    Article  PubMed  CAS  Google Scholar 

  25. Skaug B, Chen ZJ (2010) Emerging role of ISG15 in antiviral immunity. Cell 143:187–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Durfee LA, Lyon N, Seo K et al (2010) The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol Cell 38:722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin D, Mukherjee R, Grewe D et al (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587:657–662

    Google Scholar 

  28. Gu H, Jan Fada B (2020) Specificity in ubiquitination triggered by virus infection. Int J Mol Sci 21:4088

    Google Scholar 

  29. Thien CB, Langdon WY (2005) C-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 391:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakraborty S, Valiyaveettil M, Sadagopan S et al (2011) C-Cbl-mediated selective virus-receptor translocations into lipid rafts regulate productive Kaposi’s sarcoma-associated herpesvirus infection in endothelial cells. J Virol 85:12410–12430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deschamps T, Dogrammatzis C, Mullick R et al (2017) Cbl E3 ligase mediates the removal of Nectin-1 from the surface of herpes simplex virus 1-infected cells. J Virol 91:e00393-17

    Google Scholar 

  32. Galinier R, Gout E, Lortat-Jacob H et al (2002) Adenovirus protein involved in virus internalization recruits ubiquitin-protein ligases. Biochemistry 41:14299–14305

    Article  CAS  PubMed  Google Scholar 

  33. Wodrich H, Henaff D, Jammart B et al (2010) A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog 6:e1000808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Montespan C, Marvin SA, Austin S et al (2017) Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog 13:e1006217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Giraldo MI, Xia H, Aguilera-Aguirre L et al (2020) Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 585:414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Su WC, Chen YC, Tseng CH et al (2013) Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza a virus release from the endosome during virus entry. Proc Natl Acad Sci U S A 110:17516–17521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banerjee I, Miyake Y, Nobs SP et al (2014) Influenza a virus uses the aggresome processing machinery for host cell entry. Science 346:473–477

    Article  CAS  PubMed  Google Scholar 

  38. Rudnicka A, Yamauchi Y (2016) Ubiquitin in influenza virus entry and innate immunity. Viruses 8:293

    Google Scholar 

  39. Bauer M, Flatt JW, Seiler D et al (2019) The E3 ubiquitin ligase mind bomb 1 controls adenovirus genome release at the nuclear pore complex. Cell Rep 29:3785–3795

    Article  CAS  PubMed  Google Scholar 

  40. Lin YC, Jeng KS, Lai MMC (2017) CNOT4-mediated Ubiquitination of influenza A virus nucleoprotein promotes viral RNA replication. mBio 8:e00597-17

    Google Scholar 

  41. Bharaj P, Atkins C, Luthra P et al (2017) The host E3-ubiquitin ligase TRIM6 Ubiquitinates the Ebola virus VP35 protein and promotes virus replication. J Virol 91:e00833-17

    Google Scholar 

  42. Sobhian B, Laguette N, Yatim A et al (2010) HIV-1 tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D'orso I, Frankel AD (2010) HIV-1 tat: its dependence on host factors is crystal clear. Viruses 2:2226–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faust TB, Li Y, Bacon CW et al (2018) The HIV-1 tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. Elife 7:e31879

    Google Scholar 

  45. Shepley-Mctaggart A, Fan H, Sudol M et al (2020) Viruses go modular. J Biol Chem 295:4604–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garnier L, Wills JW, Verderame MF et al (1996) WW domains and retrovirus budding. Nature 381:744–745

    Article  CAS  PubMed  Google Scholar 

  47. Kikonyogo A, Bouamr F, Vana ML et al (2001) Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci U S A 98:11199–11204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  CAS  PubMed  Google Scholar 

  49. Usami Y, Popov S, Popova E et al (2009) The ESCRT pathway and HIV-1 budding. Biochem Soc Trans 37:181–184

    Article  CAS  PubMed  Google Scholar 

  50. Rauch S, Martin-Serrano J (2011) Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J Virol 85:3546–3556

    Article  CAS  PubMed  Google Scholar 

  51. Votteler J, Sundquist WI (2013) Virus budding and the ESCRT pathway. Cell Host Microbe 14:232–241

    Article  CAS  PubMed  Google Scholar 

  52. Lee HC, Chathuranga K, Lee JS (2019) Intracellular sensing of viral genomes and viral evasion. Exp Mol Med 51:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  53. Davis ME, Gack MU (2015) Ubiquitination in the antiviral immune response. Virology 479-480:52–65

    Article  CAS  PubMed  Google Scholar 

  54. Ban J, Lee NR, Lee NJ et al (2018) Human respiratory syncytial virus NS 1 targets TRIM25 to suppress RIG-I ubiquitination and subsequent RIG-I-mediated antiviral signaling. Viruses 10:716

    Google Scholar 

  55. Gack MU, Albrecht RA, Urano T et al (2009) Influenza a virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dhillon B, Aleithan F, Abdul-Sater Z et al (2019) The evolving role of TRAFs in mediating inflammatory responses. Front Immunol 10:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rahighi S, Ikeda F, Kawasaki M et al (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109

    Article  CAS  PubMed  Google Scholar 

  58. Hrdinka M, Gyrd-Hansen M (2017) The Met1-linked ubiquitin machinery: emerging themes of (De)regulation. Mol Cell 68:265–280

    Article  CAS  PubMed  Google Scholar 

  59. Seo GJ, Kim C, Shin WJ et al (2018) TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 9:613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang Q, Huang L, Hong Z et al (2017) The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathog 13:e1006264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Biolatti M, Dell'oste V, Pautasso S et al (2018) Human cytomegalovirus tegument protein pp65 (pUL83) dampens type I interferon production by inactivating the DNA sensor cGAS without affecting STING. J Virol 92:e01774-17

    Google Scholar 

  62. Huang ZF, Zou HM, Liao BW et al (2018) Human cytomegalovirus protein UL31 inhibits DNA sensing of cGAS to mediate immune evasion. Cell Host Microbe 24:69–80

    Article  CAS  PubMed  Google Scholar 

  63. Zhang G, Chan B, Samarina N et al (2016) Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc Natl Acad Sci U S A 113:E1034–E1043

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ni G, Konno H, Barber GN (2017) Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci Immunol 2:eaah7119

    Article  PubMed  PubMed Central  Google Scholar 

  66. Taguchi T, Mukai K (2019) Innate immunity signalling and membrane trafficking. Curr Opin Cell Biol 59:1–7

    Article  CAS  PubMed  Google Scholar 

  67. Wang Q, Liu X, Cui Y et al (2014) The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41:919–933

    Article  CAS  PubMed  Google Scholar 

  68. Dybas JM, Herrmann C, Weitzman MD (2018) Ubiquitination at the interface of tumor viruses and DNA damage responses. Curr Opin Virol 32:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mahon C, Krogan NJ, Craik CS et al (2014) Cullin E3 ligases and their rewiring by viral factors. Biomol Ther 4:897–930

    Google Scholar 

  70. Scheffner M, Huibregtse JM, Vierstra RD et al (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Article  CAS  PubMed  Google Scholar 

  71. Margottin F, Bour SP, Durand H et al (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574

    Article  CAS  PubMed  Google Scholar 

  72. Marin M, Rose KM, Kozak SL et al (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9:1398–1403

    Article  CAS  PubMed  Google Scholar 

  73. Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407

    Article  CAS  PubMed  Google Scholar 

  74. Yu X, Yu Y, Liu B et al (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302:1056–1060

    Article  CAS  PubMed  Google Scholar 

  75. Yu Y, Xiao Z, Ehrlich ES et al (2004) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18:2867–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo Y, Dong L, Qiu X et al (2014) Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–233

    Article  CAS  PubMed  Google Scholar 

  77. Jager S, Kim DY, Hultquist JF et al (2011) Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature 481:371–375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Olson ME, Harris RS, Harki DA (2018) APOBEC enzymes as targets for virus and Cancer therapy. Cell Chem Biol 25:36–49

    Article  CAS  PubMed  Google Scholar 

  79. Huttenhain R, Xu J, Burton LA et al (2019) ARIH2 is a Vif-dependent regulator of CUL5-mediated APOBEC3G degradation in HIV infection. Cell Host Microbe 26:86–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Angers S, Li T, Yi X et al (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593

    Article  CAS  PubMed  Google Scholar 

  81. Li T, Chen X, Garbutt KC et al (2006) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117

    Article  CAS  PubMed  Google Scholar 

  82. Li T, Robert EI, Van Breugel PC et al (2010) A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 17:105–111

    Article  PubMed  CAS  Google Scholar 

  83. Murphy CM, Xu Y, Li F et al (2016) Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep 16:2846–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lv L, Chen P, Cao L et al (2020) Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger Cyclin K degradation. Elife 9:e59994

    Google Scholar 

  85. Mayor-Ruiz C, Bauer S, Brand M et al (2020) Rational discovery of molecular glue degraders via scalable chemical profiling. Nat Chem Biol 16(11):1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Slabicki M, Kozicka Z, Petzold G et al (2020) The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585:293–297

    Google Scholar 

  87. Winston JT, Strack P, Beer-Romero P et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13:270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yaron A, Hatzubai A, Davis M et al (1998) Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396:590–594

    Article  CAS  PubMed  Google Scholar 

  89. Sakamoto KM, Kim KB, Kumagai A et al (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98:8554–8559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hon WC, Wilson MI, Harlos K et al (2002) Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417:975–978

    Article  CAS  PubMed  Google Scholar 

  91. Min JH, Yang H, Ivan M et al (2002) Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–1889

    Article  CAS  PubMed  Google Scholar 

  92. Buckley DL, Gustafson JL, Van Molle I et al (2012) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew Chem Int Ed Engl 51:11463–11467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Buckley DL, Raina K, Darricarrere N et al (2015) HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol 10:1831–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ito T, Ando H, Suzuki T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  PubMed  Google Scholar 

  95. Chamberlain PP, Lopez-Girona A, Miller K et al (2014) Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21:803–809

    Article  CAS  PubMed  Google Scholar 

  96. Fischer ES, Bohm K, Lydeard JR et al (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gandhi AK, Kang J, Havens CG et al (2014) Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol 164:811–821

    Article  CAS  PubMed  Google Scholar 

  98. Kronke J, Fink EC, Hollenbach PW et al (2015) Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523:183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu G, Middleton RE, Sun H et al (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309

    Article  CAS  PubMed  Google Scholar 

  100. Baek K, Schulman BA (2020) Molecular glue concept solidifies. Nat Chem Biol 16:2–3

    Article  CAS  PubMed  Google Scholar 

  101. Simonetta KR, Taygerly J, Boyle K et al (2019) Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat Commun 10:1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Nalawansha DA, Crews CM (2020) PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem Biol 27:998–1014

    Article  CAS  PubMed  Google Scholar 

  103. Pettersson M, Crews CM (2019) PROteolysis TArgeting chimeras (PROTACs) - past, present and future. Drug Discov Today Technol 31:15–27

    Article  PubMed  PubMed Central  Google Scholar 

  104. Verma R, Mohl D, Deshaies RJ (2020) Harnessing the power of Proteolysis for targeted protein inactivation. Mol Cell 77:446–460

    Article  CAS  PubMed  Google Scholar 

  105. Mayor-Ruiz C, Winter GE (2019) Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discov Today Technol 31:81–90

    Article  PubMed  Google Scholar 

  106. Brand M, Jiang B, Bauer S et al (2019) Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem Biol 26:300–306

    Article  CAS  PubMed  Google Scholar 

  107. Smith BE, Wang SL, Jaime-Figueroa S et al (2019) Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun 10:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  109. Maple HJ, Clayden N, Baron A et al (2019) Developing degraders: principles and perspectives on design and chemical space. Medchemcomm 10:1755–1764

    Article  CAS  PubMed  Google Scholar 

  110. Mares A, Miah AH, Smith IED et al (2020) Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun Biol 3:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Burslem GM, Smith BE, Lai AC et al (2018) The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol 25:67–77

    Article  CAS  PubMed  Google Scholar 

  112. Huang HT, Dobrovolsky D, Paulk J et al (2018) A Chemoproteomic approach to query the degradable Kinome using a multi-kinase degrader. Cell Chem Biol 25:88–99

    Article  CAS  PubMed  Google Scholar 

  113. Banik SM, Pedram K, Wisnovsky S et al (2020) Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Takahashi D, Moriyama J, Nakamura T et al (2019) AUTACs: cargo-specific degraders using selective autophagy. Mol Cell 76:797–810

    Google Scholar 

  115. Montrose K, Krissansen GW (2014) Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem Biophys Res Commun 453:735–740

    Article  CAS  PubMed  Google Scholar 

  116. De Wispelaere M, Du G, Donovan KA et al (2019) Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat Commun 10:3468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Martinez-Ortiz W, Zhou MM (2020) Could PROTACs protect us from COVID-19? Drug Discov Today 25(11):1894–1896

    Article  CAS  PubMed Central  Google Scholar 

  118. Dediego ML, Alvarez E, Almazan F et al (2007) A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 81:1701–1713

    Article  CAS  PubMed  Google Scholar 

  119. Wilson L, Gage P, Ewart G (2006) Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 353:294–306

    Article  CAS  PubMed  Google Scholar 

  120. Pervushin K, Tan E, Parthasarathy K et al (2009) Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog 5:e1000511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Sarkar M, Saha S (2020) Structural insight into the role of novel SARS-CoV-2 E protein: a potential target for vaccine development and other therapeutic strategies. PLoS One 15:e0237300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh Tomar PP, Arkin IT (2020) SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun 530:10–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jensen SM, Potts GK, Ready DB et al (2018) Specific MHC-I peptides are induced using PROTACs. Front Immunol 9:2697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Hahn S, Setz C, Wild J et al (2011) The PTAP sequence within the p6 domain of human immunodeficiency virus type 1 gag regulates its ubiquitination and MHC class I antigen presentation. J Immunol 186:5706–5718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank my colleagues Dane Mohl and Ryan Wurtz for comments and help with the Figs. I apologize to TPD researchers whose work could not be cited due to space limitations.

Declaration of Interests

I am an employee and shareholder of AMGEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rati Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, R. (2021). Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy. In: Liu, X., Zhan, P., Menéndez-Arias, L., Poongavanam, V. (eds) Antiviral Drug Discovery and Development. Advances in Experimental Medicine and Biology, vol 1322. Springer, Singapore. https://doi.org/10.1007/978-981-16-0267-2_13

Download citation

Publish with us

Policies and ethics