Skip to main content

Peptide-Based Antiviral Drugs

  • Chapter
  • First Online:
Antiviral Drug Discovery and Development

Abstract

Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3LPro:

3 L main protease

ACE-2:

Angiotensin-converting enzyme-2

ARDS:

Acute respiratory distress syndrome

BKV:

BK virus

CLPro:

Chymotrypsin-like protease

CMV:

Cytomegalovirus

CoV:

Coronavirus

DCC:

N,N′-Dicyclohexylcarbodiimide

FDA:

Food and Drug Administration

FMDV:

Foot-and-mouth disease virus

Fmoc:

9-Fluorenylmethoxycarbonyl

HAdV:

Human adenovirus

HATU:

Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium

HBTU:

Hexafluorophosphate Benzotriazole Tetramethyl Uronium

HD:

Human defensin

HIV:

Human immunodeficiency virus

HPIV:

Human parainfluenza virus

HPV:

Human papillomavirus

HSV:

Herpes simplex virus

IAV:

Influenza A virus

MERS:

Middle East respiratory syndrome

PIV:

Parainfluenza virus

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

RSV:

Respiratory syncytial virus

SARS:

Severe acute respiratory syndrome

SPPS:

Solid-phase peptide synthesis

VSV:

Vesicular stomatitis virus

WHO:

World Health Organization

References

  1. Zumla A, Hui DS (2019) Emerging and reemerging infectious diseases global overview. Infect Dis Clin North Am 33:xiii–xix

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chan WC, White P (eds) (1999) Fmoc solid phase peptide synthesis: a practical approach. OUP Oxford, Oxford, UK

    Google Scholar 

  3. Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, Nagata K, Okahata Y, Sato T (2010) Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J Med Chem 53:4441–4449

    Article  CAS  PubMed  Google Scholar 

  4. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49

    Article  CAS  PubMed  Google Scholar 

  5. Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, Wilson IA, García-Sastre A, Moran TM, Palese P (2010) Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A 107:18979–18984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geretti AM (2006) HIV-1 subtypes: epidemiology and significance for HIV management. Curr Opin Infect Dis 19:1–7

    Article  PubMed  Google Scholar 

  7. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 103:1516–1521

    Google Scholar 

  8. Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ingallinella P, Bianchi E, Ladwa NA, Wang YJ, Hrin R, Veneziano M, Bonelli F, Ketas TJ, Moore JP, Miller MD, Pessi A (2009) Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci U S A 106:5801–5806

    Google Scholar 

  10. Kim JJ, Culley CM, Mohammad RA (2012) Telaprevir: an oral protease inhibitor for hepatitis C virus infection. American journal of health-system pharmacy. Am J Health Syst Pharm 69:19–33

    Article  CAS  PubMed  Google Scholar 

  11. Mulder K, Lima LA, Miranda V, Dias SC, Franco OL (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:321

    Article  PubMed  PubMed Central  Google Scholar 

  12. Otvos L Jr, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, Kumar R, Singh S, Raghava GP (2016) PEPlife:a repository of the half-life of peptides. Sci Rep 6:1–7

    Article  CAS  Google Scholar 

  14. Werle M, Bernkop-Schnürch A (2006) Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30:351–367

    Article  CAS  PubMed  Google Scholar 

  15. Fairlie DP, Dantas de Araujo A (2016) Stapling peptides using cysteine crosslinking. Pept Sci 106:843–852

    Article  CAS  Google Scholar 

  16. Meng G, Pu J, Li Y, Han A, Tian Y, Xu W, Zhang T, Li X, Lu L, Wang C, Jiang S (2019) Design and biological evaluation of m-xylene Thioether-stapled short helical peptides targeting the HIV-1 gp41 Hexameric coiled–coil fusion complex. J Med Chem 62:8773–8783

    Article  CAS  PubMed  Google Scholar 

  17. Wang C, Xia S, Zhang P, Zhang T, Wang W, Tian Y, Meng G, Jiang S, Liu K (2018) Discovery of hydrocarbon-stapled short α-helical peptides as promising middle east respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors. J Med Chem 61:2018–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng S, Chang X, Wang Y, Gao GF, Shao Y, Ma L, Li X (2015) Glycosylated enfuvirtide: a long-lasting glycopeptide with potent anti-HIV activity. J Med Chem 58:1372–1379

    Article  CAS  PubMed  Google Scholar 

  19. Fu M, Zhuang X, Zhang T, Guan Y, Meng Q, Zhang Y (2020) PEGylated leuprolide with improved pharmacokinetic properties. Bioorg Med Chem 28:115306

    Article  CAS  PubMed  Google Scholar 

  20. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458

    Article  CAS  PubMed  Google Scholar 

  21. Avan I, Hall CD, Katritzky AR (2014) Peptidomimetics via modifications of amino acids and peptide bonds. Chem Soc Rev 43:3575–3594

    Article  CAS  PubMed  Google Scholar 

  22. Kazmaier U, Deska J (2008) Peptide backbone modifications. Curr Org Chem 12:355–385

    Article  Google Scholar 

  23. Müller MM (2018) Post-translational modifications of protein backbones: unique functions, mechanisms, and challenges. Biochemistry 57:177–185

    Article  PubMed  CAS  Google Scholar 

  24. Tugyi R, Uray K, Iván D, Fellinger E, Perkins A, Hudecz F (2005) Partial D-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A 102:413–418

    Google Scholar 

  25. Wu J, Tang J, Chen H, He Y, Wang H, Yao H (2018) Recent developments in peptide macrocyclization. Tetrahedron Lett 59:325–333

    Article  CAS  Google Scholar 

  26. Gante J (1994) Peptidomimetics—tailored enzyme inhibitors. Angew Chem Int Ed Engl 33:1699–1720

    Article  Google Scholar 

  27. Orellana C (2002) Immune system stimulator shows promise against tuberculosis. Lancet Infect Dis 2:711

    Article  PubMed  Google Scholar 

  28. Reymond JL, Van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. MedChemComm 1:30–38

    Article  CAS  Google Scholar 

  29. Takahashi H, Fukuhara T, Kitazawa H, Kormelink R (2019) Virus latency and the impact on plants. Front Microbiol 10:2764

    Article  PubMed  PubMed Central  Google Scholar 

  30. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohmann HB, Babiuk LA (1986) Viral infections in domestic animals as models for studies of viral immunology and pathogenesis. J Gen Virol 67:1–25

    Article  Google Scholar 

  32. Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M (2012) Human viruses: discovery and emergence. Philos Trans R Soc Lond Ser B Biol Sci 367:2864–2871

    Article  Google Scholar 

  33. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal G, Gabrani R (2020) Antiviral peptides: identification and validation. Int J Pept Res Ther 18:1–20

    Google Scholar 

  35. Demirkhanyan LH, Marin M, Padilla-Parra S, Zhan C, Miyauchi K, Jean-Baptiste M (2012) Multifaceted mechanisms of HIV-1 entry inhibition by human alpha-defensin. J Biol Chem 287:28821–28838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Root MJ, Steger HK (2004) HIV-1 gp41 as a target for viral entry inhibition. Curr Pharm Des 10:1805–1825

    Article  CAS  PubMed  Google Scholar 

  37. Paeshuyse J, Kaul A, De Clercq E, Rosenwirth B, Dumont JM, Scalfaro P, Bartenschlager R, Neyts J (2006) The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology 43:761–770

    Article  CAS  PubMed  Google Scholar 

  38. Flexner C (2007) HIV drug development: the next 25 years. Nat Rev Drug Discov 6:959–966

    Article  CAS  PubMed  Google Scholar 

  39. Cai L, Jiang S (2010) Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. Chem Med Chem 5:1813–1824

    Article  CAS  PubMed  Google Scholar 

  40. Zhang D, Li W, Jiang S (2015) Peptide fusion inhibitors targeting the HIV-1 gp41: a patent review (2009–2014). Expert Opin Ther Pat 25:159–173

    Article  CAS  PubMed  Google Scholar 

  41. Chong H, Yao X, Zhang C, Cai L, Cui S, Wang Y, He Y (2012) Biophysical property and broad anti-HIV activity of albuvirtide, a 3-maleimimidopropionic acid-modified peptide fusion inhibitor. PLoS One 7:e32599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He Y, Xiao Y, Song H, Liang Q, Ju D, Chen X, Lu H, Jing W, Jiang S, Zhang L (2008) Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 283:11126–11134

    Article  CAS  PubMed  Google Scholar 

  43. Wang RR, Yang LM, Wang YH, Pang W, Tam SC, Tien P, Zheng YT (2009) Sifuvirtide, a potent HIV fusion inhibitor peptide. Biochem Biophys Res Commun 382:540–544

    Article  CAS  PubMed  Google Scholar 

  44. Xie D, Yao C, Wang L, Min W, Xu J, Xiao J, Huang M, Chen B, Liu B, Li X, Jiang H (2010) An albumin-conjugated peptide exhibits potent anti-HIV activity and long in vivo half-life. Antimicrob Agents Chemother 54:191–196

    Article  CAS  PubMed  Google Scholar 

  45. Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, Pasut G, Chaiken I (2019) Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. J Pept Sci 25:e3155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gopi H, Umashankara M, Pirrone V, LaLonde J, Madani N, Tuzer F, Baxter S, Zentner I, Cocklin S, Jawanda N, Miller SR (2008) Structural determinants for affinity enhancement of a dual antagonist peptide entry inhibitor of human immunodeficiency virus type-1. J Med Chem 51:2638–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  48. National Center for Biotechnology Information (2020) PubChem Compound Summary for CID 100094, Oglufanide. https://pubchem.ncbi.nlm.nih.gov/compound/Oglufanide

  49. Chen Q, Guo Y (2016) Influenza viral hemagglutinin peptide inhibits influenza viral entry by shielding the host receptor. ACS Infect Dis 2:187–193

    Google Scholar 

  50. Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, Kostolansky F, Vareckova E, Zitka O, Adam V, Kizek R (2015) Perspective of use of antiviral peptides against influenza virus. Viruses 7:5428–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim SP, Shi PY (2013) West Nile virus drug discovery. Viruses 5:2977–3006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hrobowski YM, Garry RF, Michael SF (2005) Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2:49

    Google Scholar 

  53. VanPatten S, He M, Altiti A, F Cheng K, Ghanem MH, Al-Abed Y (2020) Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Med Chem 10:4155

    Google Scholar 

  54. Zorzi A, Middendorp SJ, Wilbs J, Deyle K, Heinis C (2017) Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nat Commun 8:1–9

    Article  CAS  Google Scholar 

  55. Liang R, Wang L, Zhang N, Deng X, Su M, Su Y, Hu L, He C, Ying T, Jiang S, Yu F (2018) Development of small-molecule MERS-CoV inhibitors. Viruses 10:721

    Article  CAS  PubMed Central  Google Scholar 

  56. Tomar S, Johnston ML, John SES, Osswald HL, Nyalapatla PR, Paul LN, Ghosh AK, Denison MR, Mesecar AD (2015) Ligand-induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro) implications for nsp5 regulation and the development of antivirals. J Biol Chem 290:19403–19422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, Geng H, Li H, Wang Q, Xiao H, Tan W (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol 87:13134–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun 5:1–2

    Google Scholar 

  59. Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee SS, Chakraborty C (2020) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol 92:618–631

    Article  CAS  PubMed  Google Scholar 

  60. Panda PK, Murugan NA, Patel P, Verma SK, Luo W, Rubahn H-G, Mishra YK, Suar M, Ahuja R (2020) Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci Adv 6:eabb8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murugan NA, Pandian CJ, Jeyakanthan J (2020) Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn 2020:1–12. https://doi.org/10.1080/07391102.2020.1777901

    Article  CAS  Google Scholar 

  62. Badani H, Garry RF, Wimley WC (2014) Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta 1838:2180–2197

    Google Scholar 

  63. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y (2020) Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289–293

    Article  CAS  PubMed  Google Scholar 

  64. Majkowska-Pilip A, Halik PK, Gniazdowska E (2019) The significance of NK1 receptor ligands and their application in targeted radionuclide tumour therapy. Pharmaceutics 11:443

    Article  CAS  PubMed Central  Google Scholar 

  65. Han Y, Král P (2020) Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano 14:5143–5147

    Article  CAS  PubMed  Google Scholar 

  66. Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 15:690–698

    Google Scholar 

  67. Rao GS, Bhatnagar S, Ahuja V (2002) Structure-based design of a novel peptide inhibitor of HIV-1 integrase: a computer modeling approach. J Biomol Struct Dyn 20:31–38

    Article  CAS  PubMed  Google Scholar 

  68. Xia S, Liu Q, Wang Q, Sun ZW, Su S, Dub LY, Ying TL, Lu L, Jiang SB (2014) Middle east respiratory syndrome coronavirus (mers-cov) entry inhibitors targeting spike protein. Virus Res 194:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park S, Jackman JA, Cho NJ (2019) Comparing the membrane-interaction profiles of two antiviral peptides: insights into structure–function relationship. Langmuir 35:9934–9943

    Article  CAS  PubMed  Google Scholar 

  70. Elazar M, Cheong KH, Liu P, Greenberg HB, Rice CM, Glenn JS (2003) Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. J Virol 77:6055–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bodanszky M (2012) Principles of peptide synthesis. In: Reactivity and structure: concepts in organic chemistry, vol 16. Springer, New York

    Google Scholar 

  72. Bodanszky M, Bodanszky A (2013) The practice of peptide synthesis. In: Reactivity and structure: concepts in organic chemistry, vol 21. Springer, New York

    Google Scholar 

  73. Da’san MMJ (2018) Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 50:39–68

    Article  CAS  Google Scholar 

  74. Kimmerlin T, Seebach D (2005) ‘100 years of peptide synthesis’: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J Pept Res 65:229–260

    Article  CAS  PubMed  Google Scholar 

  75. Merrifield RB (1963) Solid phase peptide synthesis I: the synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  76. Conibear AC, Watson EE, Payne RJ, Becker CF (2018) Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 47:9046–9068

    Article  CAS  PubMed  Google Scholar 

  77. Carpino LA, Han GY (1972) 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37:3404–3409

    Article  CAS  Google Scholar 

  78. Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gordon YJ, Huang LC, Romanowski EG, Yate KA, Proske RJ, McDermott AM (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:385–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilson SS, Wiens ME, Smith JG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425:4965–4980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ding J, Tasker C, Valere K, Sihvonen T, Descalzi-Montoya DB, Lu W, Chang TL (2013) Anti-HIV activity of human defensin 5 in primary CD4+T cells under serum-deprived conditions is a consequence of defensin-mediated cytotoxicity. PLoS One 8:e76038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K, Page R (2008) Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 283:31125–31132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eade CR, Wood MP, Cole AM (2012) Mechanisms and modifications of naturally occurring host defense peptides for anti-HIV microbicide development. Curr HIV Res 10:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Furci L, Tolazzi M, Sironi F, Vassena L, Lusso P (2012) Inhibition of HIV-1 infection by human alpha-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One 7:e45208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 177:8658–8666

    Article  CAS  PubMed  Google Scholar 

  86. Rapista A, Ding J, Benito B, Lo YT, Neiditch MB, Lu W (2011) Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smith JG, Nemerow GR (2008) Mechanism of adenovirus neutralization by human alpha-defensins. Cell Host Microbe 3:11–19

    Article  CAS  PubMed  Google Scholar 

  88. Verma C, Seebah S, Low SM, Zhou L, Liu SP, Li J (2007) Defensins: antimicrobial peptides for therapeutic development. Biotechnol J 2:1353–1359

    Article  CAS  PubMed  Google Scholar 

  89. Sun L (2013) Peptide-based drug development. Mod Chem appl 1:e103

    Article  Google Scholar 

  90. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  91. Muruga Poopathi Raja K (2016) Biopharmaceuticals – emerging peptide therapeutics. Cutting Edge 6:16–20

    Google Scholar 

  92. Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17:134–143

    Article  CAS  PubMed  Google Scholar 

  93. Ling R, Dai Y, Huang B, Huang W, Yu J, Lu X, Jiang Y (2020) In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides 130:170328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pierce BG, Boucher EN, Piepenbrink KH, Ejemel M, Rapp CA, Thomas WD, Sundberg EJ, Weng Z, Wang Y (2017) Structure-based Design of Hepatitis C Virus Vaccines that Elicit Neutralizing Antibody Responses to a conserved epitope. J Virol 91:e01032–17

    Google Scholar 

  95. Zhang R, Wei DQ, Du S, Chou KC (2006) Molecular modeling studies of peptide drug candidates against SARS. Med Chem 2:309–314

    Article  CAS  PubMed  Google Scholar 

  96. Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93:12–20

    Article  CAS  PubMed  Google Scholar 

  97. Yang Z, Yang G, Zu Y, Fu Y, Zhou L (2010) Computer-based de novo designs of tripeptides as novel neuraminidase inhibitors. Int J Mol Sci 11:4932–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gallay PA, Lin K (2013) Profile of alisporivir and its potential in the treatment of hepatitis C. Drug Des Devel Ther 7:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Coelmont L, Kaptein S, Paeshuyse J, Vliegen I, Dumont JM, Vuagniaux G, Neyts J (2009) Debio 025, a cyclophilin binding molecule, is highly efficient in clearing hepatitis C virus (HCV) replicon-containing cells when used alone or in combination with specifically targeted antiviral therapy for HCV (STAT-C) inhibitors. Antimicrob Agents Chemother 53:967–976

    Article  CAS  PubMed  Google Scholar 

  100. Aspinall RJ, Pockros PJ (2006) SCV-07 (SciClone pharmaceuticals/Verta). Curr Opin Investig Drugs 7:180–185

    CAS  PubMed  Google Scholar 

  101. McHutchison JG, Manns MP, Muir AJ, Terrault NA, Jacobson IM, Afdhal NH, Heathcote EJ, Zeuzem S, Reesink HW, Garg J, Bsharat M, George S, Kauffman RS, Adda N, Di Bisceglie AM, PROVE3 Study Team (2010) Telaprevir for previously treated chronic HCV infection. N Engl J Med 362:1292–1303

    Article  CAS  PubMed  Google Scholar 

  102. Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P (2011) Telaprevir for retreatment of HCV infection. N Engl J Med 364:2417–2428

    Google Scholar 

  103. Bold G, Fässler A, Capraro HG, Cozens R, Klimkait T, Lazdins J, Mestan J, Poncioni B, Rösel J, Stover D, Tintelnot-Blomley M, Acemoglu F, Beck W, Boss E, Eschbach M, Hürlimann T, Masso E, Roussel S, Ucci-Stoll K, Wyss D, Lang M (1998) New aza-dipeptide analogues as potent. J Med Chem 41:3387–3401

    Article  CAS  PubMed  Google Scholar 

  104. Croom KF, Dhillon S, Keam SJ (2009) Atazanavir: a review of its use in the management of HIV-1 infection. Drugs 69:1107–1140

    Article  CAS  PubMed  Google Scholar 

  105. Sjogren MH (2004) Thymalfasin: an immune system enhancer for the treatment of liver disease. J Gastroenterol Hepatol 19:S69–S72

    Article  CAS  PubMed  Google Scholar 

  106. Gramenzi A, Cursaro C, Andreone P, Bernardi M (1998) Thymalfasin: clinical pharmacology and antiviral applications. BioDrugs 9:477–486

    Google Scholar 

  107. Chien RN, Liaw YF (2004) Thymalfasin for the treatment of chronic hepatitis B. Expert Rev Anti-Infect Ther 2:9–16

    Article  CAS  PubMed  Google Scholar 

  108. Rustgi VK (2005) Thymalfasin for the treatment of hepatitis C infection. Expert Rev Anti-Infect Ther 3:885–892

    Article  CAS  PubMed  Google Scholar 

  109. Su SB, Gong WH, Gao JL, Shen WP, Grimm MC, Deng X, Murphy PM, Oppenheim JJ, Wang JM (1999) T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor. Blood 93:3885–3892

    Article  CAS  PubMed  Google Scholar 

  110. Lalezari JP, Eron JJ, Carlson M, Cohen C, DeJesus E, Arduino RC, Gallant JE, Volberding P, Murphy RL, Valentine F, Nelson EL, Sista PR, Dusek A, Kilby JM (2003) A phase II clinical study of the long-term safety and antiviral activity of enfuvirtide-based antiretroviral therapy. AIDS 17:691–698

    Article  CAS  PubMed  Google Scholar 

  111. Zhang H, Jin R, Yao C, Zhang T, Wang M, Xia W, Peng H, Wang X, Lu R, Wang C, Xie D (2016) Combination of long-acting HIV fusion inhibitor albuvirtide and LPV/r showed potent efficacy in HIV-1 patients. AIDS Res Ther 13:1–4

    Google Scholar 

Download references

Acknowledgments

KMPR acknowledges the financial support through high priority COVID-19 research projects from Science and Engineering Research Board (SERB) [IPA/2020/000285], the Department of Biotechnology (DBT) [BT/PR-40921/COT/142/13/2020], and the Board of Research in Nuclear Sciences (BRNS) [54/14/10//2020-BRNS/37083] of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Arul Murugan or K. Muruga Poopathi Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murugan, N.A., Raja, K.M.P., Saraswathi, N.T. (2021). Peptide-Based Antiviral Drugs. In: Liu, X., Zhan, P., Menéndez-Arias, L., Poongavanam, V. (eds) Antiviral Drug Discovery and Development. Advances in Experimental Medicine and Biology, vol 1322. Springer, Singapore. https://doi.org/10.1007/978-981-16-0267-2_10

Download citation

Publish with us

Policies and ethics