Skip to main content

Analysis of Thermal Energy Storage Mediums for Solar Thermal Energy Applications

  • Conference paper
  • First Online:
Advances in Clean Energy Technologies

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1657 Accesses

Abstract

Energy storage mediums are highly popular in solar applications due to their ability to store heat and release it during any time period of the day. This study provides a classification of different thermal energy storage (TES) mediums in various solar energy systems with their feasibility and future applications. The concept of TES and the various studies on the application of TES in solar thermal applications have been presented. Recent advances and the performance of common solar thermal systems with and without TES have also been presented. Working conditions, economical aspects, suitability, and selection criteria of TES materials have also been discussed based on their application. This paper also uncovers the future aspects that possibly will improve the use of TES and lead to the performance optimization of solar thermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Conti, C. Charach, Thermodynamics of heat storage in a PCM shell-and-tube heat exchanger in parallel or in series with a heat engine. Solar Energy, 59–68.

    Google Scholar 

  2. T. Kerslake, M. Ibrahim, Analysis of thermal energy storage material with change of phase volumetric effects. ASME J. Solar Energy Eng. 22–31

    Google Scholar 

  3. J. Duffie, W. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, 2013).

    Google Scholar 

  4. K. Pielichowska, K. Pielichowska, Phase change materials for thermal energy storage. Prog. Mater Sci. 65, 67–123 (2014)

    Article  Google Scholar 

  5. G. Kokogiannakis, J. Darkwa, W. Su, Review of solid–liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 48, 373–391 (2015)

    Article  Google Scholar 

  6. K. Sopian, M. Alkilani, S. Mat, Fabrication and experimental investigation of PCM capsules integrated in solar air heater. Am. J. Environ. Sci. 7, 542–546 (2011)

    Article  Google Scholar 

  7. S. Enible, Thermal analysis of a natural circulation solar air heater with phase change material energy storage. Renew. Energy 28, 2269–2299 (2003)

    Article  Google Scholar 

  8. P. Naphon, Effect of porous media on the performance of the double-pass flat plate solar air heater. Int. Com. Heat Mass Transf. 32, 140–150 (2005)

    Article  Google Scholar 

  9. V. Tygai, A. Pandey, S. Kaushik, S. Tyagi, Thermal performance evaluation of a solar air heater with and without thermal energy storage. J. Therm. Anal. Calorim. 1–8 (2011)

    Google Scholar 

  10. W. Aissa, M.E. Sallak, A. Elhakem, An experimental investigation of forced convection flat plate solar air heater with thermal storage material. Therm. Sci. 1105–1116 (2012)

    Google Scholar 

  11. H. Yadav, A. Saxena, N.K. Sharma, Thermal performance evaluation of a design, and cost optimized solar air heater, in Int Cong Renew Energy (ICORE-2012) Grid Power from Renewables organized by Solar Energy Society of India (SESI), pp. 345–353 (2012)

    Google Scholar 

  12. A. Saxena, N. Agarwal, G. Srivastava, Design and performance of a solar air heater with long term heat storage. Int. J. Heat Mass Transf. 60, 8–16 (2013)

    Article  Google Scholar 

  13. S. Karthikeyan, G. Solomon, V. Kumaresan, R. Velraj, Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Convers. Manage. 78, 74–80 (2014)

    Article  Google Scholar 

  14. S. Bouadila, S. Kooli, S. Slouri, M. Lazaar, A. Farhat, Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy 64, 663–672 (2014)

    Article  Google Scholar 

  15. A. Wadhawan, A.S. Dhoble, V.B. Gawande, Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater. Alexandria Eng. J. 57(3), 1173–1183 (2018)

    Article  Google Scholar 

  16. A. Hasan, Thermal energy storage system with stearic acid as phase change material. Energy Conserv. Manage. 35(10), 843–856 (1994)

    Article  Google Scholar 

  17. A. Hasan, Phase change material energy storage system employing palmitic acid. Sol Energy 35(10), 143–154 (1994)

    Article  Google Scholar 

  18. A. Sayigh, A. Hasan, Some fatty acids as phase change thermal energy storage materials. Renew. Energy 4(1), 69–76 (1994)

    Article  Google Scholar 

  19. H. Xue, Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage. Renew. Energy 86, 257–261 (2016)

    Article  Google Scholar 

  20. S. Canbazoğlu, A. Şahinaslan, A. Ekmekyapar, Ý.G. Aksoy, F. Akarsu, Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system. Energy Build. 37(3) (2005)

    Google Scholar 

  21. d.A. Gracia, E. Oró, M. Farid, L.F. Cabeza, Thermal analysis of including phase change material in a domestic. Appl. Therm. Eng. 3938–3945 (2011)

    Google Scholar 

  22. M. Mazman, L. Cabeza, H. Mehling, M. Nogues, H. Evliya, H. Paksoy, Utilization of phase change materials in solar domestic hot water systems. Renew. Energy 34, 1639–1643 (2009)

    Article  Google Scholar 

  23. I. Al-Hinti, A. Al-Ghandoor, A. Maaly, I.A. Naqeera, Z. Al-Khateeb, O. Al-Sheikh, Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Convers. Manag 51, 1735–1740 (2010)

    Article  Google Scholar 

  24. T. Kousksou, P. Bruel, G. Cherreau, V. Leoussoff, T.E. Rhafiki, PCM storage for solar DHW: From an unfulfilled promise to a real benefit. Sol. Energy 85, 2033–2040 (2011)

    Article  Google Scholar 

  25. R. Murray, L. Desgrosseilliers, J. Stewart, N. Osbourne, G. Marin, A. Safatli, D. Groulx, M. White, in Design of a latent heat energy storage system coupled with a domestic hot water solar thermal system (2011)

    Google Scholar 

  26. S. Bouadila, M. Fteïti, M. Oueslati, A. Guizani, A. Farhat, Enhancement of latent heat storage in a rectangular cavity: solar water heater case study. Energy Convers. Manage. 78, 904–912 (2014)

    Google Scholar 

  27. A. Alemrajabi, M. Fazilati, Phase change material for enhancing solar water heater, an experimental approach. Energy Convers. Manag 71, 138–145 (2013)

    Article  Google Scholar 

  28. M. Naghavi, K. Ong, I. Badruddin, M. Mehrali, H. Metselaar, Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy 127, 101–115 (2017)

    Article  Google Scholar 

  29. A. Khalifa, K. Suffer, M. Mahmoud, A storage domestic solar hot water system with a back layer of phase change material. Exp. Therm. Fluid Sci. 44, 174–181 (2013)

    Article  Google Scholar 

  30. H. Al-Kayiem, S. Lin, Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol. Energy. 109, 82–92 (2014)

    Article  Google Scholar 

  31. A. Papadimitratos, S. Sobhansarbandi, V. Pozdin, A. Zakhidov, F. Hassanipour, Evacuated tube solar collectors integrated with phase change materials. Sol. Energy 129, 10–19 (2016)

    Article  Google Scholar 

  32. J. Butler, J. Troeger, Drying peanuts using solar energy stored in a rockbed. Agric. Energy Solar Energy 1 (1980)

    Google Scholar 

  33. M. Ndukwu, D. Onyenwigwe, F. Abam, A. Eke, Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy (2020)

    Google Scholar 

  34. Z. Alimohammadi, H.S. Akhijahani, P. Salami, Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Sol. Energy 201, 157–177 (2020)

    Article  Google Scholar 

  35. A. Reyes, F. Vásquez, A. Mahn, Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers. Manage. 83, 241–248 (2014)

    Article  Google Scholar 

  36. H. Atalay, Performance analysis of a solar dryer integrated with the packed bed. Energy 172, 1037–1052 (2019)

    Article  Google Scholar 

  37. R. Grewal, H. Manchanda, M. Kumar, A review on applications of phase change materials in solar distillation, in 2nd International Conference on Emerging Trends in Science, Engineering & Technology, Pune (2018).

    Google Scholar 

  38. UCLA, in Phase Change Composite Materials for Energy Efficient Building Envelopes, San Diego.

    Google Scholar 

  39. A. Saxena, S. Lath, T. Vineet, Solar cooking by using PCM as a thermal heat storage. Int. J. Mechan. Eng. 3(2), 91–95 (2013)

    Google Scholar 

  40. S.E. Jo, M.S. Kim, M.K. Kim, J.Y. Kim, Power generation of a thermoelectric generator with phase change materials. Smart Mater. Struct. 22 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivansh Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, S., Khatri, R., Goswami, S. (2021). Analysis of Thermal Energy Storage Mediums for Solar Thermal Energy Applications. In: Baredar, P.V., Tangellapalli, S., Solanki, C.S. (eds) Advances in Clean Energy Technologies . Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-0235-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0235-1_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0234-4

  • Online ISBN: 978-981-16-0235-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics