Skip to main content

Water Compatible Molecularly Imprinted Polymers

  • Chapter
  • First Online:
Molecularly Imprinted Polymers as Advanced Drug Delivery Systems
  • 338 Accesses

Abstract

In this chapter, water compatible molecularly imprinted polymers for the drug release and delivery were summarized. The recent development mainly included pH-sensitive hydrogel-based, temperature-sensitive hydrogel, and cyclodextrins-based molecularly imprinted polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malakooti N, Alexander C, Alvarez-Lorenzo C (2015) Imprinted contact lenses for sustained release of polymyxin B and related antimicrobial peptides. J Pharm Sci 104:3386–3394

    Article  CAS  PubMed  Google Scholar 

  2. Kaamyabi S, Habibi D, Amini MM (2016) Preparation and characterization of the pH and thermosensitive magnetic molecular imprinted nanoparticle polymer for the cancer drug delivery. Bioorg Med Chem Lett 26:2349–2354

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Y, Yang L, Huang D, Zhu Q (2017) Molecularly imprinted nanoparticles and their releasing properties, bio-distribution as drug carriers. Asian J Pharm Sci 12:172–178

    Article  PubMed  Google Scholar 

  4. Paul PK, Treetong A, Suedee R (2017) Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm 67:149–168

    Article  CAS  PubMed  Google Scholar 

  5. Allender CJ, Richardson C, Woodhouse B, Heard CM, Brain KR (2000) Pharmaceutical applications for molecularly imprinted polymers. Int J Pharm 195:39–43

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez-Lorenzo C, Concheiro A (2006) Molecularly imprinted materials as advanced excipients for drug delivery systems. Biotechnol Annu Rev 12:225–268

    Article  CAS  PubMed  Google Scholar 

  7. Sellergren B, Allender CJ (2005) Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57:1733–1741

    Article  CAS  PubMed  Google Scholar 

  8. Abdouss M, Asadi E, Azodi-Deilami S, Beik-mohammadi N, Aslanzadeh SA (2011) Development and characterization of molecularly imprinted polymers for controlled release of citalopram. J Mater Sci Mater Med 22:2273–2281

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Javadi A, Ghaffari M, Gong S (2010) A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors. Biomaterials 31:4944–4951

    Article  CAS  PubMed  Google Scholar 

  10. Mao C, Xie X, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Chu PK, Wu S (2017) The controlled drug release by pH-sensitive molecularly imprinted nanospheres for enhanced antibacterial activity. Mater Sci Eng C Mater Biol App 77:84–91

    Article  CAS  Google Scholar 

  11. Yan Q, Liu L, Wang T, Wang H (2017) A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property. Colloid Polym Sci 297:705–717

    Article  CAS  Google Scholar 

  12. Wei P, Song R, Chen C, Li Z, Zhu Z, Li S (2019) A pH-responsive molecularly imprinted hydrogel for dexamethasone release. J Inorg Organomet Polym Mater 29:659–666

    Article  CAS  Google Scholar 

  13. Mohajeri SA, Malaekeh-Nikouei B, Sadegh H (2012) Development of a pH-responsive imprinted polymer for diclofenac and study of its binding properties in organic and aqueous media. Drug Dev Ind Pharm 38:616–622

    Article  CAS  PubMed  Google Scholar 

  14. Talavat L, Güner A (2019) Thermodynamic computational calculations for preparation 5-fluorouracilmagnetic moleculary imprinted polymers and their application in controlled drug release. Inorg Chem Commun 103:119–127

    Article  CAS  Google Scholar 

  15. Cegłowski M, Kurczewska J, Ruszkowski P, Schroeder G (2019) Application of paclitaxel-imprinted microparticles obtained using two different cross-linkers for prolonged drug delivery. Eur Polym J 118:328–336

    Article  CAS  Google Scholar 

  16. Cegłowski M, Kurczewska J, Ruszkowski P, Liberska J, Schroeder G (2019) The influence of cross-linking agent onto adsorption properties, release behavior and cytotoxicity of doxorubicin-imprinted microparticles. Colloids Surf B Biointerfaces 182:110379

    Article  PubMed  CAS  Google Scholar 

  17. Cooper AI (2001) Recent developments in materials synthesis and processing using supercritical CO2. Adv Mater 13:1111–1114

    Article  CAS  Google Scholar 

  18. Duarte ARC, Casimiro T, Aguiar-Ricardo A, Simplício AL, Duarte CMM (2006) Supercritical fluid polymerisation and impregnation of molecularly imprinted polymers for drug delivery. J Supercrit Fluids 39:102–106

    Article  CAS  Google Scholar 

  19. da Silva MS, Viveiros R, Morgado PI, Aguiar-Ricardo A, Correia IJ, Casimiro T (2011) Development of 2-(dimethylamino)ethyl methacrylate-based molecular recognition devices for controlled drug delivery using supercritical fluid technology. Int J Pharm 416:61–68

    Article  PubMed  CAS  Google Scholar 

  20. Marcelo G, Ferreira IC, Viveiros R, Casimiro T (2018) Development of itaconic acid-based molecular imprinted polymers using supercritical fluid technology for pH-triggered drug delivery. Int J Pharm 542:125–131

    Article  CAS  PubMed  Google Scholar 

  21. Çetin K, Alkan H, Bereli N, Denizli A (2017) Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin. J Macromol Sci Part A 8:502–508

    Article  CAS  Google Scholar 

  22. Esfandyari-Manesh M, Darvishi B, Ishkuh FA, Shahmoradi E, Mohammadi A, Javanbakht M, Dinarvand R, Atyabi F (2016) Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: characterization and cellular cytotoxicity. Mater Sci Eng C Mater Biol Appl 62:626–633

    Article  CAS  PubMed  Google Scholar 

  23. Barde LN, Ghule MM, Roy AA, Mathur VB, Shivhare UD (2013) Development of molecularly imprinted polymer as sustain release drug carrier for propranolol HCL. Drug Dev Ind Pharm 39:1247–1253

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Liu R, Huang H, Zhu Q (2019) Vinblastine-loaded nanoparticles with enhanced tumor-targeting efficiency and decreasing toxicity: developed by one-step molecular imprinting process. Mol Pharm 16:2675–2689

    Article  CAS  PubMed  Google Scholar 

  25. Mokhtari P, Ghaedi M (2019) Water compatible molecularly imprinted polymer for controlled release of riboflavin as drug delivery system. Eur Polym J 118:614–618

    Article  CAS  Google Scholar 

  26. Dramou P, Zuo P, He H, Pham-Huy LA, Zou W, Xiao D, Pham-Huy C, Ndorbor T (2013) Anticancer loading and controlled release of novel water-compatible magnetic nanomaterials as drug delivery agents, coupled to a computational modeling approach. J Mater Chem B 1:4099–4109

    Article  CAS  PubMed  Google Scholar 

  27. Ji K, Luo X, He L, Liao S, Hu L, Han J, Chen C, Liu Y, Tan N (2020) Preparation of hollow magnetic molecularly imprinted polymer and its application in silybin recognition and controlled release. J Pharm Biomed Anal 180:113036

    Article  CAS  PubMed  Google Scholar 

  28. Hemmati K, Sahraei R, Ghaemy M (2016) Synthesis and characterization of a novel magnetic molecularly imprinted polymer with incorporated graphene oxide for drug delivery. Polymer 101:257–268

    Article  CAS  Google Scholar 

  29. Zhang K, Guan X, Qiu Y, Wang D, Zhang X, Zhang H (2016) A pH/glutathione double responsive drug delivery system using molecular imprint technique for drug loading. Appl Surf Sci 389:1208–1213

    Article  CAS  Google Scholar 

  30. Suedee R, Srichana T, Martin GP (2000) Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of beta-blockers. J Control Release 66:135–147

    Article  CAS  PubMed  Google Scholar 

  31. Suedee R, Srichana T, Rattananont T (2002) Enantioselective release of controlled delivery granules based on molecularly imprinted polymers. Drug Deliv 9:19–30

    Article  CAS  PubMed  Google Scholar 

  32. Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113:43–56

    Article  CAS  PubMed  Google Scholar 

  33. Suedee R, Jantarat C, Lindner W, Viernstein H, Songkro S, Srichana T (2010) Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs. J Control Release 142:122–131

    Article  CAS  PubMed  Google Scholar 

  34. Chen F, Jiang XP, Kuang TR, Chang LQ, Fu DJ, Zhong MQ (2015) Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature. Polym Chem 6:3529–3536

    Article  CAS  Google Scholar 

  35. Chen F, Jiang XP, Kuang TR, Chang LQ, Zhong MQ (2015) Effect of nanoporous structure and polymer brushes on the ionic conductivity of poly(methacrylic acid)/anode aluminum oxide hybrid membranes. RSC Adv 5:70204–70210

    Article  CAS  Google Scholar 

  36. Zhang C, Jia X, Wang Y, Zhang M, Yang S, Guo J (2014) Thermosensitive molecularly imprinted hydrogel cross-linked with N-malely chitosan for the recognition and separation of BSA. J Sep Sci 37:419–426

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Chen L, Zhang H, Yang Y, Liu X (2017) Recognition of 5-fluorouracil by thermosensitive magnetic surface molecularly imprinted microspheres designed using a computational approach. J Appl Polym Sci 134:45468

    Article  CAS  Google Scholar 

  38. Li L, Chen L, Zhang H, Yang Y, Liu X, Chen Y (2016) Temperature and magnetism bi-responsive molecularly imprinted polymers: preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil. Mater Sci Eng C Mater Biol Appl 61:158–168

    Article  CAS  PubMed  Google Scholar 

  39. Sedghi R, Yassari M, Heidari B (2018) Thermo-responsive molecularly imprinted polymer containing magnetic nanoparticles: synthesis, characterization and adsorption properties for curcumin. Colloids Surf B Biointerfaces 162:154–162

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Ma Y, Niu H, Zhang H (2015) Hydrophilic hollow molecularly imprinted polymer microparticles with photo- and thermoresponsive template binding and release properties in aqueous media. ACS Appl Mater Interfaces 7:27340–27350

    Article  CAS  PubMed  Google Scholar 

  41. Shen X, Ye L (2011) Molecular imprinting in Pickering emulsions: a new insight into molecular recognition in water. Chem Commun (Camb) 47:10359–10361

    Article  CAS  Google Scholar 

  42. Ayari MG, Kadhirvel P, Favetta P, Plano B, Dejous C, Carbonnier B, Agrofoglio LA (2019) Synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion to controlled release of adenosine 5′-monophosphate. Mater Sci Eng C Mater Biol App 101:254–263

    Article  CAS  Google Scholar 

  43. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    Article  CAS  PubMed  Google Scholar 

  44. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11

    Article  CAS  PubMed  Google Scholar 

  45. Concheiro A, Alvarez-Lorenzo C (2013) Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev 65:1188–1203

    Article  CAS  PubMed  Google Scholar 

  46. Adeoye O, Cabral-Marques H (2017) Cyclodextrin nanosystems in oral drug delivery: a mini review. Int J Pharm 531:521–531

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Feng W, Li C, Tan T (2010) Investigation of the inclusions of puerarin and daidzin with beta-cyclodextrin by molecular dynamics simulation. J Phys Chem B 114:4876–4883

    Article  CAS  PubMed  Google Scholar 

  48. Henriksen NM, Fenley AT, Gilson MK (2015) Computational calorimetry: high-precision calculation of host-guest binding thermodynamics. J Chem Theory Comput 11:4377–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cunliffe D, Kirby A, Alexander C (2005) Molecularly imprinted drug delivery systems. Adv Drug Deliv Rev 57:1836–1853

    CAS  PubMed  Google Scholar 

  50. Alvarez-Lorenzo C, Yañez F, Barreiro-Iglesias R, Concheiro A (2006) Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release 113:236–244

    Article  CAS  PubMed  Google Scholar 

  51. Chen H, Zhang W, Yang N, Chen C, Zhang M (2018) Chitosan-based surface molecularly imprinted polymer microspheres for sustained release of sinomenine hydrochloride in aqueous media. Appl Biochem Biotechnol 185:370–384

    Article  CAS  PubMed  Google Scholar 

  52. Hishiya T, Shibata M, Kakazu M, Asanuma H, Komiyama M (1999) Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 32:2265–2269

    Article  CAS  Google Scholar 

  53. Hishiya T, Asanuma H, Komiyama M (2002) Spectroscopic anatomy of molecular-imprinting of cyclodextrin. Evidence for preferential formation of ordered cyclodextrin assemblies. J Am Chem Soc 124:570–575

    Article  CAS  PubMed  Google Scholar 

  54. Asanuma H, Akiyama T, Kajiya K, Hishiya T, Komiyama M (2001) Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests. Anal Chim Acta 435:25–33

    Article  CAS  Google Scholar 

  55. Piletsky SA, Andersson HS, Nicholls IA (1999) Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers. Macromolecules 32:633–636

    Article  CAS  Google Scholar 

  56. He Y, Zeng S, Abd El-Aty AM, Hacımüftüoğlu A, Kalekristos Yohannes W, Khan M, She Y (2020) Development of water-compatible molecularly imprinted polymers based on functionalized β-cyclodextrin for controlled release of atropine. Polymers (Basel) 12:130

    Article  CAS  Google Scholar 

  57. Juric D, Rohner NA, von Recum HA (2019) Molecular imprinting of cyclodextrin supramolecular hydrogels improves drug loading and delivery. Macromol Biosci 19:e1800246

    Article  PubMed  CAS  Google Scholar 

  58. Caldera F, Tannous M, Cavalli R, Zanetti M, Trotta F (2017) Evolution of cyclodextrin nanosponges. Int J Pharm 531:470–479

    Article  CAS  PubMed  Google Scholar 

  59. Siemoneit U, Schmitt C, Alvarez-Lorenzo C, Luzardo A, Otero-Espinar F, Concheiro A, Blanco-Méndez J (2006) Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int J Pharm 312:66–74

    Article  CAS  PubMed  Google Scholar 

  60. Trotta F, Caldera F, Cavalli R, Soster M, Riedo C, Biasizzo M, Barretta GU, Balzano F, Brunella V (2016) Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives. Expert Opin Drug Deliv 13:1671–1680

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiliang Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Q. (2021). Water Compatible Molecularly Imprinted Polymers. In: Liu, Z., Huang, Y., Yang, Y. (eds) Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-0227-6_4

Download citation

Publish with us

Policies and ethics