Skip to main content

Comparison of Certain Models to Estimate the Best Solar Global Radiation for Jamshedpur, Jharkhand, India

  • Conference paper
  • First Online:
Next Generation Materials and Processing Technologies

Part of the book series: Springer Proceedings in Materials ((SPM,volume 9))

  • 843 Accesses

Abstract

In this paper, linear regression model is evaluated to find the monthly average global radiation on flat surface for the city Jamshedpur, Jharkhand, India, by collecting the data from meteorological station. Six empirical models are evaluated from the Angstrom–Prescott and performance is being compared in between estimated and measured monthly average global radiation. Several statistical test is performed to check the validation of models in term of coefficient of correlation (R2), root mean square error (RMSE), mean bias error (MBE), and the t-stat. The results are within acceptable limits R2 as 0.99, RMSE as 2.343, MBE as 2.272, and t-stat with 13.177 shows the superiority of proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jamil B, Bellos E (2019) Development of empirical models for estimation of global solar radiation exergy in India. J Clean Prod 207:1–16

    Google Scholar 

  2. Namrata K, Sharma SP, Seksena SBL (2013) Comparison of different models for estimation of global solar radiation in Jharkhand (India) region. Smart Grid Renew Energy 4:348–352

    Article  Google Scholar 

  3. Das A, Park J-K, Park J-H (2015) Estimation of available global solar radiation using sunshine duration over south Korea. J Atmosph Solar Terr Phys 134:22–29

    Article  Google Scholar 

  4. Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69:191–224

    Article  Google Scholar 

  5. Bagheri Tolabi H, Moradi MH, Ayob SM, Zandebasiri MR (2013) New technique for global solar radiation prediction using imperialist competitive algorithm. J Basic Appl Sci Res 3(3):958–964

    Google Scholar 

  6. Jamil Ahmad M, Tiwari GN (2011) Solar radiation models—a review. Int J Energy Res 35(4):271–290

    Article  Google Scholar 

  7. Katiyar AK, Pandey CK (2013) A review of solar radiation models—Part I. J Renew Energy. https://doi.org/10.1155/2013/168048

    Article  Google Scholar 

  8. Ulgen K, Hepbasli A (2004) Solar radiation models: Part 1: a review. Energy Sources 26:507–520

    Google Scholar 

  9. Harrouni, S., & Maafi, A. (2002). Classification des éclairements solaires à l’aide de l’analyse fractale. Revue Internationale des éenergies renouvelables, 5, 107-122.

    Book  Google Scholar 

  10. Harrouni, S., Guessoum, A., & Maafi, A. (2005). Classification of daily solar irradiation by fractional analysis of 10-min-means of solar irradiance. Theoretical and applied climatology, 80(1), 27-36.

    Google Scholar 

  11. Maafi, A., & Harrouni, S. (2003). Preliminary results of the fractal classification of daily solar irradiances. Solar Energy, 75(1), 53-61.

    Google Scholar 

  12. Badescu V (2008) Modeling solar radiation at the earth’s surface. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  13. Muneer T, Etxebarria S, Gago EJ (2014) Monthly averaged-hourly solar diffuse radiation model for the UK. Build Serv Eng Res Technol, 573–584

    Google Scholar 

  14. Jamil B, Akhtar N (2017) Estimation of diffuse solar radiation in humid-subtropical climatic region of India: comparison of diffuse fraction and diffusion coefficient models. Energy 131:149–164

    Article  Google Scholar 

  15. Katiyar AK, Pandey CK (2013) A review of solar radiation models-Part I. J Renew Energy

    Google Scholar 

  16. Ahmad L, Kanth RH, Parvaze S, MahdiSS (2017) Measurement of sunshine duration. In: Experimental agrometeorology: a practical manual, pp 37–39

    Google Scholar 

  17. Donatelli M, Bellocchi G, Fontana F (2003) RadEst3.00: Software to estimate daily radiation data from commonly available meteorological variables. Euro J Agron 18:363–367

    Google Scholar 

  18. Solar radiation handbook, Solar Energy Centre, MNRE

    Google Scholar 

  19. Garg HP, Garg SN (1985) Correlation of monthly average daily global, diffuse and beam radiation with bright sunshine hours. Energy Convers Manag 25:409–417

    Article  Google Scholar 

  20. Raja IA, Twidell JW (1990) Distribution of global insolation over Pakistan. Sol Energy 44:63–71

    Article  Google Scholar 

  21. Quej VH, Almorox J, Ibrakhimov M, Saito L (2016) Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Convers Manage, 448–456

    Google Scholar 

  22. Doost AK, Akhlaghi M (2014) Estimation and comparison of solar radiation intensity by some models in a region of Iran. J Power Energy Eng 2:345–351

    Article  Google Scholar 

  23. Manzano A, Martın ML, Valero F, Armenta C (2015) A single method to estimate the daily global solar radiation from monthly data. Atmosph Res 166:170–182

    Article  Google Scholar 

  24. Mousavi SM, Mostafavi ES, Jaafari A et al (2015) Using measured daily meteorological parameters to predict daily solar radiation. Measurement 76:148–155

    Article  Google Scholar 

  25. Karkoti I, Das PK, Singh SK (2012) Predicting monthly mean daily diffuse radiation for India. Appl Energy, 412–425

    Google Scholar 

  26. Cao F, Li HS, Yang T, Li Y, Zhu TY, Zhao L (2017) Evaluation of diffuse solar radiation models in Northern China: new model establishment and radiation sources comparison. Renew Energy, 708–720

    Google Scholar 

  27. Despotovic M, Nedic V, Despotovic D, Cvetanovic S (2016) Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew Sustain Energy Rev, 246–260

    Google Scholar 

  28. Almorox Javier (2011) Estimating global solar radiation from common metrological data in Spain. Turkish J Phys 35:53–64

    Google Scholar 

  29. Akinoǧlu BG, Ecevit A (1990) Construction of a quadratic model using modified Ångstrom coefficients to estimate global solar radiation. Sol Energy, 85–92

    Google Scholar 

  30. Angstrom A (1924) Solar and terrestrial radiation. Q J Roy Met Soc 50:121

    Article  Google Scholar 

  31. Chakrabarti S, Jamil B, Sakhale CN (2020) Estimation of global solar radiation for the tropical wet climatic region of India: a theory of experimentation approach. Renew Energy 146(Feb 2020):2044–2059

    Google Scholar 

  32. Duffie JA, Beckman WA (1994) Solar engineering of thermal process, 2nd edn. John Wiley, New York

    Google Scholar 

  33. Spencer JW (1982) A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Solar Energy, 19–32

    Google Scholar 

  34. Rietveld MR (1978) A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agric Meteorol, 243–252

    Google Scholar 

  35. Namrata K, Sharma SP, Seksena SBL (2014) Determining regression constants for calculating global solar radiation at Jharkhand (India) region. In: 2014 International conference on renewable energy research and application (ICRERA), Milwaukee, WI, pp 795–797

    Google Scholar 

  36. Gopinathan KK, Soler A (1992) A sunshine dependent global insolation model for latitudes between 60°N and 70°N. Renew Energy 2:401–404

    Article  Google Scholar 

  37. Gopinathan KK (1988) A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Sol Energy, 499–502

    Google Scholar 

  38. Gopinathan KK (1988) A simple method for predicting global solar radiation on a horizontal surface. Sol Wind Technol, 581–593

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahsan, M., Chand, P., Namrata, K. (2021). Comparison of Certain Models to Estimate the Best Solar Global Radiation for Jamshedpur, Jharkhand, India. In: Bag, S., Paul, C.P., Baruah, M. (eds) Next Generation Materials and Processing Technologies. Springer Proceedings in Materials, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-16-0182-8_10

Download citation

Publish with us

Policies and ethics