Skip to main content

Biological Rhythm and Neuropsychiatric Disorders

  • Chapter
  • First Online:
Sleep and Neuropsychiatric Disorders

Abstract

This chapter describes the concept of circadian rhythm in detail. The molecular clock mechanism of the master circadian clock and its interaction with central and peripheral clocks are explained. The chronobiological basis of neuropsychiatric disorders with available evidence regarding the circadian disruption in them along with the probable mechanism for the circadian disruption in these disorders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuhara C, Aguzzi J, Bullock N, Tosini G. Effect of long-term exposure to constant dim light on the circadian system of rats. Neurosignals. 2005;14(3):117–25.

    Article  CAS  Google Scholar 

  2. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69:1583–6.

    Article  CAS  Google Scholar 

  3. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.

    Article  CAS  Google Scholar 

  4. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80(10):2587.

    Article  CAS  Google Scholar 

  5. Bubenik GA. Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci. 2002;47(10):2336–48.

    Article  CAS  Google Scholar 

  6. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434–43.

    Article  CAS  Google Scholar 

  7. Kryger MH, Roth T, Dement WC. Principles and practice of sleep medicine. Philadelphia: Elsevier; 2005.

    Google Scholar 

  8. Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2005;2(5):297–307.

    Article  CAS  Google Scholar 

  9. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409.

    Article  CAS  Google Scholar 

  10. Valenta LJ, Elias AN, Eisenberg H. ACTH stimulation of adrenal epinephrine and norepinephrine release. Horm Res. 1986;23(1):16–20.

    Article  CAS  Google Scholar 

  11. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113(21):5134–43.

    Article  CAS  Google Scholar 

  12. Allada R, White NE, So WV, Hall JC, Rosbash M. A mutant drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998;93(5):791–804.

    Article  CAS  Google Scholar 

  13. Chen X, Rosbash M. Mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Proc Natl Acad Sci U S A. 2016;113(21):E2965–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Klein DC, Moore RY, Reppert SM, editors. Suprachiasmatic nucleus: the mind’s clock. New York: Oxford University Press; 1991. 467 p.

    Google Scholar 

  15. Beck-Friis J, Kjellman BF, Aperia B, Undén F, von Rosen D, Ljunggren JG, et al. Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand. 1985;71(4):319–30.

    Article  CAS  Google Scholar 

  16. Morera-Fumero AL, Abreu-Gonzalez P. Role of melatonin in schizophrenia. Int J Mol Sci. 2013;14(5):9037–50.

    Article  Google Scholar 

  17. Etain B, Jamain S, Milhiet V, Lajnef M, Boudebesse C, Dumaine A, et al. Association between circadian genes, bipolar disorders and chronotypes. Chronobiol Int. 2014;31(7):807–14.

    Article  CAS  Google Scholar 

  18. Nurnberger JI, Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A, et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry. 2000;57(6):572–9.

    Article  CAS  Google Scholar 

  19. Kripke DF, Nievergelt CM, Joo E, Shekhtman T, Kelsoe JR. Circadian polymorphisms associated with affective disorders. J Circadian Rhythms. 2009;7:2.

    Article  Google Scholar 

  20. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5(2):150–7.

    Article  CAS  Google Scholar 

  21. Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35(6):1279–89.

    Article  CAS  Google Scholar 

  22. Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet. 2017;26(R2):R128–38.

    Article  CAS  Google Scholar 

  23. Brown LF, Reynolds CF, Monk TH, Prigerson HG, Dew MA, Houck PR, et al. Social rhythm stability following late-life spousal bereavement: associations with depression and sleep impairment. Psychiatry Res. 1996;62(2):161–9.

    Article  CAS  Google Scholar 

  24. Frank E, Swartz HA, Kupfer DJ. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry. 2000;48(6):593–604.

    Article  CAS  Google Scholar 

  25. Wehr T, Wirz-Justice A. Circadian rhythm mechanisms in affective illness and in antidepressant drug action. Pharmacopsychiatry. 1982;15(01):31–9.

    Article  CAS  Google Scholar 

  26. The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry. 1990;147(1):14–21.

    Google Scholar 

  27. Stetler C. Uncoupling of social zeitgebers and diurnal cortisol secretion in clinical depression. Psychoneuroendocrinology. 2004;29(10):1250–9.

    Article  CAS  Google Scholar 

  28. Vogel GW. Improvement of depression by REM sleep deprivation: new findings and a theory. Arch Gen Psychiatry. 1980;37(3):247.

    Article  CAS  Google Scholar 

  29. Grandin LD, Alloy LB, Abramson LY. The social zeitgeber theory, circadian rhythms, and mood disorders: review and evaluation. Clin Psychol Rev. 2006;26(6):679–94.

    Article  Google Scholar 

  30. Boland EM, Bender RE, Alloy LB, Conner BT, LaBelle DR, Abramson LY. Life events and social rhythms in bipolar spectrum disorders: an examination of social rhythm sensitivity. J Affect Disord. 2012;139(3):264–72.

    Article  Google Scholar 

  31. Sylvia LG, Alloy LB, Hafner JA, Gauger MC, Verdon K, Abramson LY. Life events and social rhythms in bipolar spectrum disorders: a prospective study. Behav Ther. 2009;40(2):131–41.

    Article  Google Scholar 

  32. Alloy LB, Boland EM, Ng TH, Whitehouse WG, Abramson LY. Low social rhythm regularity predicts first onset of bipolar spectrum disorders among at-risk individuals with reward hypersensitivity. J Abnorm Psychol. 2015;124(4):944–52.

    Article  Google Scholar 

  33. Shen GH, Alloy LB, Abramson LY, Sylvia LG. Social rhythm regularity and the onset of affective episodes in bipolar spectrum individuals. Bipolar Disord. 2008;10(4):520–9.

    Article  Google Scholar 

  34. Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006;311(5763):1002–5.

    Article  CAS  Google Scholar 

  35. Nováková M, Praško J, Látalová K, Sládek M, Sumová A. The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 2015;17(3):303–14.

    Article  Google Scholar 

  36. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110(24):9950–5.

    Article  CAS  Google Scholar 

  37. Johansson A-S, Owe-Larsson B, Hetta J, Lundkvist GB. Altered circadian clock gene expression in patients with schizophrenia. Schizophr Res. 2016;174(1–3):17–23.

    Article  Google Scholar 

  38. Implications of circadian rhythm in dopamine and mood regulation. Molecules and cells [Internet]. 2017 [cited 2020 Jan 24]. http://www.molcells.org/journal/view.html?doi=10.14348/molcells.2017.0065

  39. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, et al. Regulation of monoamine oxidase a by circadian-clock components implies clock influence on mood. Curr Biol. 2008;18(9):678–83.

    Article  CAS  Google Scholar 

  40. Chung S, Lee EJ, Yun S, Choe HK, Park S-B, Son HJ, et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell. 2014;157(4):858–68.

    Article  CAS  Google Scholar 

  41. Weber M, Lauterburg T, Tobler I, Burgunder J-M. Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett. 2004;358(1):17–20.

    Article  CAS  Google Scholar 

  42. Domínguez-López S, Howell RD, López-Canúl MG, Leyton M, Gobbi G. Electrophysiological characterization of dopamine neuronal activity in the ventral tegmental area across the light-dark cycle: dopamine neurotransmission across the light-dark cycle. Synapse. 2014;68(10):454–67.

    Article  Google Scholar 

  43. Luo AH, Aston-Jones G. Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci. 2009;29(4):748–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, K. (2022). Biological Rhythm and Neuropsychiatric Disorders. In: Gupta, R., Neubauer, D.N., Pandi-Perumal, S.R. (eds) Sleep and Neuropsychiatric Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-0123-1_3

Download citation

Publish with us

Policies and ethics