Skip to main content

Recent Advancement in Nanostructured-Based Electrochemical Genosensors for Pathogen Detection

  • Chapter
  • First Online:
Emerging Trends in Nanotechnology

Abstract

Pathogen detection is a critical issue to minimize the mortality caused due to different pathogenic diseases. Biosensors provide the most attractive and alternative method for the fast, selective and reliable detection of pathogens as compared to conventional methods such as PCR, ELISA and FISH which have some limitations. Biosensors in which DNA/RNA were used as recognition element are known as genosensors. Genosensors provide wide range of applications in diagnosis of diseases including infectious diseases, cancer, autoimmune diseases and much more. Recent advancement in the incorporation of nanostructures for the fabrication of genosensors had raised lot of attention. These nanostructured materials provide large surface area, biocompatibility, nontoxicity and surface defects which have led to the development of successful electrochemical genosensors. This chapter includes recent progress in the fabrication of genosensors for pathogen detection based on different nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaiswal N, Pandey CM, Soni A, Tiwari I, Rosillo-Lopez M, Salzmann CG, Malhotra BD, Sumana G (2018) Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sens Actuators B Chem 275:312–321

    Article  CAS  Google Scholar 

  2. Peng F, Su Y, Zhong Y, Fan C, Lee S-T, He Y (2014) Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 47:612–623

    Article  CAS  Google Scholar 

  3. Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, Saboury AA, Falahati M (2019) Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 126:773–784

    Article  CAS  Google Scholar 

  4. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  Google Scholar 

  5. Tzouvadaki I, Jolly P, Lu X, Ingebrandt S, De Micheli G, Estrela P, Carrara S (2016) Label-free ultrasensitive memristive aptasensor. Nano Lett 16:4472–4476

    Article  CAS  Google Scholar 

  6. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications–an overview. Front Bioeng Biotechnol 4:11

    Article  CAS  Google Scholar 

  7. Nazari-Vanani R, Sattarahmady N, Yadegari H, Heli H (2018) A novel and ultrasensitive electrochemical DNA biosensor based on an ice crystals-like gold nanostructure for the detection of Enterococcus faecalis gene sequence. Colloids Surf B Biointerfaces 166:245–253

    Article  CAS  Google Scholar 

  8. Sattarahmady N, Movahedpour A, Heli H, Hatam GR (2016) Gold nanoparticles-based biosensing of Leishmania major kDNA genome: visual and spectrophotometric detections. Sens Actuators B Chem 235:723–731

    Article  CAS  Google Scholar 

  9. Sattarahmady N, Heli H, Vais RD (2013) An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure. Biosens Bioelectron 48:197–202

    Article  CAS  Google Scholar 

  10. Mohammadi J, Moattari A, Sattarahmady N, Pirbonyeh N, Yadegari H, Heli H (2017) Electrochemical biosensing of influenza a subtype genome based on meso/macroporous cobalt (II) oxide nanoflakes-applied to human samples. Anal Chim Acta 979:51–57

    Article  CAS  Google Scholar 

  11. Rahi A, Sattarahmady N, Heli H (2015) Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci Rep 5:18060

    Article  CAS  Google Scholar 

  12. Moradi M, Sattarahmady N, Hatam GR, Heli H (2016) Electrochemical genosensing of Leishmania major using gold hierarchical nanoleaflets. J Biol Today’s World 5:128–136

    CAS  Google Scholar 

  13. Heli H, Sattarahmady N, Hatam GR, Reisi F, Vais RD (2016) An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite quantum dots. Talanta 156:172–179

    Article  CAS  Google Scholar 

  14. Negahdary M, Behjati-Ardakani M, Sattarahmady N, Yadegari H, Heli H (2017) Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-applied to early detection of myocardial infarction. Sensors Actuators B Chem 252:62–71

    Article  CAS  Google Scholar 

  15. Rahi A, Sattarahmady N, Heli H (2016) An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles. Anal Biochem 510:11–17

    Article  CAS  Google Scholar 

  16. Sattarahmady N, Rahi A, Heli H (2017) A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci Rep 7:11238

    Article  CAS  Google Scholar 

  17. Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csöregi E (2004) Biosensors for life quality: design, development and applications. Sensors Actuators B Chem 102:179–194

    Article  CAS  Google Scholar 

  18. Mobed A, Hasanzadeh M, Babaie P, Agazadeh M, Mokhtarzadeh A, Rezaee MA (2019) DNA-based bioassay of legionella pneumonia pathogen using gold nanostructure: a new platform for diagnosis of legionellosis. Int J Biol Macromol 128:692–699

    Article  CAS  Google Scholar 

  19. Ye Y, Mao S, He S, Xu X, Cao X, Wei Z, Gunasekaran S (2020) Ultrasensitive electrochemical genosensor for detection of CaMV35S gene with Fe3O4-Au@ Ag nanoprobe. Talanta 206:120205

    Article  CAS  Google Scholar 

  20. Oliveira DA, Silva JV, Flauzino JMR, Sousa HS, Castro ACH, Moço ACR, Soares MMCN, Madurro JM, Brito-Madurro AG (2019) Carbon nanomaterial as platform for electrochemical genosensor: a system for the diagnosis of the hepatitis C in real sample. J Electroanal Chem 844:6–13

    Article  CAS  Google Scholar 

  21. Casadevall A, Pirofski LA (2014) Microbiology: ditch the term pathogen. Nature 516:165–166

    Article  CAS  Google Scholar 

  22. Godfree A (2007) Health constraints on the agricultural recycling of wastewater sludges. Handbook of Water and Wastewater Microbiol 2003:281–298

    Google Scholar 

  23. Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  24. Margaret M (2007) Adaptive immunity: care for the community. Nature 445:153

    Article  CAS  Google Scholar 

  25. http://www.who.int/whr/1996/media_centre/press_release/en/

  26. Verdaguer N, Ferrero D, Murthy MR (2014) IUCrJ 1:492–504

    Article  CAS  Google Scholar 

  27. Koo I (2019) Understanding the different types of pathogens. https://www.verywellhealth.com/what-is-a-pathogen-1958836

  28. Garcia-Solache MA, Casadevall A (2010) Global warming will bring new fungal diseases for mammals. MBio 1:e00061–10

    Google Scholar 

  29. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Regul Toxicol GSC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Pharmacol 73:137–150

    CAS  Google Scholar 

  30. ISO/TS 80004-1(2010) Nanotechnology–Vocabulary– Part 1: Core Terms. International Organization for Standardization,  Geneva Switzerland

    Google Scholar 

  31. Bleeker EAJ, Cassee FR, Geertsma RE (2012) Interpretation and implications of the European Commission’s definition on nanomaterials. Letter Report (601358001)

    Google Scholar 

  32. Potocnik J (2011) Off J Eur Communities: Legis 275:38–40

    Google Scholar 

  33. Kumar N, Kumbhat S (2016) Essentials in nanoscience and nanotechnology. Wiley, pp 189–236

    Google Scholar 

  34. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nat Nanotechnol 363:603–605

    CAS  Google Scholar 

  35. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  36. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  37. Dreyer DR, Park S, Bielawski CW, Ruo ff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  38. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Article  CAS  Google Scholar 

  39. Sun X, Liu Z, Welsher K, Robinson J, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  40. Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406

    Article  CAS  Google Scholar 

  41. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  42. Karthikeyan B, Pandiyarajan T, Mangaiyarkarasi K (2011) Optical properties of sol–gel synthesized calcium doped ZnO nanostructures. Spectrochimica Acta: Mol Biomolecular Spectro 82:97–101

    Article  CAS  Google Scholar 

  43. Qin HW, Zhang ZL, Liu X, Zhang YJ, Hu JF (2010) Room-temperature ferromagnetism in CuO sol–gel powders and films. J Magn Magn Mater 322:1994–1998

    Article  CAS  Google Scholar 

  44. Zou CW, Wang J, Liang F, Xie W, Shao LX, Fu DJ (2012) Large-area aligned CuO nanowires arrays: synthesis, anomalous ferromagnetic and CO gas sensing properties. Curr Appl Phys 12:1349–1354

    Article  Google Scholar 

  45. Wang JZ, Du N, Zhang H, Yu JX, Yang D (2011) Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. J Phys Chem C 115:11302–11305

    Article  CAS  Google Scholar 

  46. Na HG, Kwak DS, Kim HW (2012) Structural, Raman, and photoluminescence properties of doubleshelled coaxial nanocables of In2O3 core with ZnO and AZO shells. Cryst Res Technol 47:79–86

    Article  CAS  Google Scholar 

  47. Chen LC, Huang CM, Gao CS, Wang GW, Hsiao MC (2011) A comparative study of the effects of In2O3 and SnO2 modification on the photocatalytic activity and characteristics of TiO2. Chem Eng J 175:49–55

    Article  CAS  Google Scholar 

  48. Li JP, Sun FQ, Gu KY, Wu TX, Zhai W, Li WS, Huang SF (2011) Preparation of spindly CuO microparticles for photodegradation of dye pollutants under a halogen tungsten lamp. Appl Catal A 406:51–58

    Article  CAS  Google Scholar 

  49. Motoyoshi R, Oku T, Kidowaki H, Suzuki A, Kikuchi K, Kikuchi S, Jeyadevan B (2010) Structure and photovoltaic activity of cupric oxide-based thin film solar cells. J Ceram Soc Jpn 118:1021–1023

    Article  CAS  Google Scholar 

  50. Hsueh HT, Chang SJ, Weng WY, Hsu CL (2011) Fabrication and characterization of coaxial p-copper oxide/nZnO nanowire photodiodes. IEEE Trans Nanotechnol 11:127–133

    Article  Google Scholar 

  51. Hsueh HT, Hsueh TJ, Chang SJ, Hung FY, Tsai TY, Weng WY, Hsu CL, Dai BT (2011) CuO nanowire-based humidity sensors prepared on glass substrate. Sens Actuators B: Chem 156:906–911

    Article  CAS  Google Scholar 

  52. Wang JX, Sun XW, Yang Y, Kyaw KKA, Huang XY, Yin JZ, Wei J, Demir HV (2011) Freestanding ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology 22:325704

    Article  CAS  Google Scholar 

  53. Dandeneau CS, Jeon YH, Shelton CT, Plant TK, Cann DP, Gibbons BJ (2009) Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517:4448–4454

    Article  CAS  Google Scholar 

  54. Raj V, Prabha G (2016) Synthesis, characterization and in vitro drug release of cisplatin loaded cassava starch acetate–PEG/gelatin nanocomposites. J Assoc Arab Univ Basic Appl Sci 21:10–16

    Google Scholar 

  55. Bala SS, Francis AP, Devasena T (2014) Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178

    Article  CAS  Google Scholar 

  56. Fullana SG, Ternet H, Freche M, Lacout JL, Rodriguez F (2010) Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement. Acta Biomater 6:2294–2300

    Article  CAS  Google Scholar 

  57. Acasigua GAX, Olyveira GM, Costa LMM, Braghirolli DI, Fossati A, Carlos Guastaldi ACM (2014) Novel chemically modified bacterial cellulose nanocomposite as potential biomaterial for stem cell therapy applications. Curr Stem Cell Res Ther 9:117–123

    Article  CAS  Google Scholar 

  58. Malagurski I, Levic S, Pantic M, Matijasevic D, Mitric M, Pavlovic V, Dimitrijevic-Brankovic S (2017) Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. Carbohydr Polym 165:313–321

    Article  CAS  Google Scholar 

  59. Sneha M, Sundaram NM (2015) Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy. Int J Nanomedicine 10:99–106

    CAS  Google Scholar 

  60. Wilson J, Radhakrishnan S, Sumathi C, Dharuman V (2012) Polypyrrole polyaniline-Au (PPy-PANi-Au) nanocomposite films for label-free electrochemical DNA sensing. Sens Actuators, B 171–172:216–222

    Article  CAS  Google Scholar 

  61. Baghayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electromagnetic poly (p-phenylene diamine) @Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265

    Article  CAS  Google Scholar 

  62. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 52:13–19

    Article  CAS  Google Scholar 

  63. Radhakrishnan S, Sumathi C, Umar A, Kim SJ, Wilson J, Dharuman V (2013) Polypyrrole-poly (3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens Bioelectron 47:133–140

    Article  CAS  Google Scholar 

  64. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng, C 27:990–993

    Article  CAS  Google Scholar 

  65. Rao CNR, Cheetham AKJ (2001) Science and technology of nanomaterials: Current status and future prospects. J Mater Chem 11:2887–2894

    Article  CAS  Google Scholar 

  66. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  67. Diviès C (1975) Ethanol oxidation by an Acetobacter xylinum. Microbial Electrode Ann Microbiol 126:175–86

    Google Scholar 

  68. Khan S (2018) Development of nanostructured metal oxides based electrochemical biosensors for the detection of bacterial pathogens using biomarkers. PhD Thesis, Jamia Millia Islamia, New Delhi, India

    Google Scholar 

  69. Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60:69–80

    Article  Google Scholar 

  70. Fabry P, Siebert E (1997) In: The CRC handbook of solid-state electrochemistry. ed Gellings PJ, Bouwmeester HJM. CRC Press, New York

    Google Scholar 

  71. Winquist F, Holmin S, Krantz-Rülcker C, Wide P, Lundström I (2000) A hybrid electronic tongue. Anal Chim Acta 406:147–157

    Google Scholar 

  72. Compton RG, Banks CE (2011) Understanding voltammetry. 2nd edn. Imperial College Press

    Google Scholar 

  73. Razavi H, Janfaza S (2015) Medical nanobiosensors: a tutorial review. Nanomed J 2:74–87

    Google Scholar 

  74. Ahmed MU, Nahar S, Safavieh N, Zourob M (2013) Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe. Analyst 138:907–915

    Article  CAS  Google Scholar 

  75. Abdalhai MH, Fernandes AM, Bashari M, Ji J, He Q, Sun X (2014) Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef. J Agric FoodChem 62:12659–12667

    Article  CAS  Google Scholar 

  76. Dong S, Zhao R, Zhu J (2015) Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of Avian influenza A (H7N9) Virus. ACS Appl Mater Interfaces 7:8834–8842

    Article  CAS  Google Scholar 

  77. Andrade CAS, Nascimento JM, Oliveira IS, de Oliveira CVJ, de Melo CP, Franco OL, Oliveira MDL (2015) Nanostructured sensor based on carbon nanotubes and Clavanin A for bacterial detection. Colloids Surf B Biointerfaces 35:833–839

    Article  CAS  Google Scholar 

  78. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci 101:14017–14022

    Article  CAS  Google Scholar 

  79. Chen J, Liu D, Li S, Yao D (2010) Development of an amperometric enzyme electrode biosensor for sterigmatocystin detection. Enzyme Microb Technol 47:119–126

    Article  CAS  Google Scholar 

  80. Li S, Chen JH, Cao H, Yao D, Liu D (2011) Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 2(2):43–49

    Article  CAS  Google Scholar 

  81. Yao D, Cao H, Wen S, Liu D, Bai Y, Zheng W (2006) A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin–detoxifizyme (ADTZ). Bioelectrochemistry 68:126–133

    Article  CAS  Google Scholar 

  82. Wang S, Li L, Jin H, Yang T, Bao W, Huang S, Wang J (2013) Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens Bioelectron 41:205–210

    Article  CAS  Google Scholar 

  83. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes methods and applications. Small 2:182–193

    Article  CAS  Google Scholar 

  84. Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem 113:13482–13487

    CAS  Google Scholar 

  85. Qiaocui S, Tuzhi P, Yunu Z, Yang CF (2005) An electrochemical biosensor with cholesterol oxidase/ sol-gel film on a nanoplatinum/carbon nanotube electrode. Electroanal 17:857–861

    Article  CAS  Google Scholar 

  86. Toledano R, Mandler D (2010) Electrochemical codeposition of thin gold nanoparticles/Sol-Gel nanocomposite films. Chem Mater 22:3943–3951

    Article  CAS  Google Scholar 

  87. Cernat A, Tertis M, Gandouzi I, Bakhrouf A, Suciuand M, Cristea C (2018) Electrochemical sensor for the rapid detection of Pseudomonas aeruginosa siderophore based on a nanocomposite platform. Electrochem Commun 88:5–9

    Article  CAS  Google Scholar 

  88. Yang Z, Wang Y, Zhang D (2017) A novel multifunctional electrochemical platform for simultaneous detection, elimination, and inactivation of pathogenic bacteria based on the Vancomycin-functionalised AgNPs/3D-ZnO nanorod arrays. Biosens Bioelectron 98:248–253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akrema or Rahisuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S., Akrema, Arif, R., Yasmeen, S., Rahisuddin (2021). Recent Advancement in Nanostructured-Based Electrochemical Genosensors for Pathogen Detection. In: Khan, Z.H. (eds) Emerging Trends in Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9904-0_12

Download citation

Publish with us

Policies and ethics