Skip to main content

Enablers for IoT Regarding Wearable Medical Devices to Support Healthy Living: The Five Facets

  • Chapter
  • First Online:
IoT in Healthcare and Ambient Assisted Living

Abstract

Wearables, body sensor networks, ambient, and Internet of Things (IoT) technologies are currently fairly popular in health-related researches and practices. Definitely, wearable technologies are a central fragment of the IoT. Moreover, wearables are becoming more ubiquitous, and they have noteworthy functions and benefits for healthy living and aging. In this context, the success of wearable medical devices is important. Nevertheless, the current understanding in this field needs enhancements. Hence, the authors conducted a study to identify enablers for IoT regarding wearable medical devices. Explicitly, the authors mainly aimed to identify enablers and relevant characteristics to attain, sustain, and improve success. Consequently, a questionnaire was deployed, and data were collected from 511 participants who are real and current wearable medical device users. For analysis, an exploratory factor analysis methodology was applied. The results show that there are five enablers (dependability; design; worthiness; privacy, confidentiality, and security; compatibility) with 17 items, explaining 75.318% of the total variance. Based on these, the authors crafted a checklist for stakeholders to appraise the relevant devices. This chapter contributes to the pertinent body of knowledge concerning the enablers for IoT regarding wearable medical devices to support healthy living with extracted results. This contribution advances the relevant understanding and is going to be helpful for researchers in the field and wearable medical devices product developers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nord, J.H., Koohang, A., Paliszkiewicz, J.: The internet of things: review and theoretical framework. Expert Syst. Appl. 133, 97–108 (2019). https://doi.org/10.1016/j.eswa.2019.05.014

    Article  Google Scholar 

  2. Lo, B.P.L., Ip, H., Yang, G.-Z.: Transforming health care: body sensor networks, wearables, and the internet of things. IEEE Pulse 7(1), 4–8 (2016). https://doi.org/10.1109/MPUL.2015.2498474

    Article  Google Scholar 

  3. Shabnam, F., Azmi Hoque, S. M., Faiyad, S. Al.: IoT based health monitoring using smart devices for medical emergency services. In: 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), pp. 69–72. IEEE. https://doi.org/10.1109/RAAICON48939.2019.34

  4. da Costa, C.A., Pasluosta, C.F., Eskofier, B., da Silva, D.B., da Rosa Righi, R.: Internet of health things: toward intelligent vital signs monitoring in hospital wards. Artificial Intelligence in Medicine 89, 61–69 (2018). https://doi.org/10.1016/j.artmed.2018.05.005

    Article  Google Scholar 

  5. Sadoughi, F., Behmanesh, A., Sayfouri, N.: Internet of things in medicine: a systematic mapping study. Biomed. Inf. 103(January), 103383 (2020). https://doi.org/10.1016/j.jbi.2020.103383

    Article  Google Scholar 

  6. Rodrigues, J.J.P.C., De Rezende Segundo, D.B., Junqueira, H.A., Sabino, M.H., Prince, R.M., Al-Muhtadi, J., De Albuquerque, V.H.C.: Enabling technologies for the internet of health things. IEEE Access 6, 13129–13141 (2018). https://doi.org/10.1109/ACCESS.2017.2789329

    Article  Google Scholar 

  7. PremaLatha, V., Sreedevi, E., Sivakumar, S.: Contemplate on internet of things transforming as medical devices—the internet of medical things (IOMT). In: 2019 International Conference on Intelligent Sustainable Systems (ICISS), pp. 276–281. IEEE (2019). https://doi.org/10.1109/ISS1.2019.8908090

  8. Bates, D.W., Cresswell, K.M., Wright, A., Sheikh, A.: The future of medical informatics. In: Key Advances in Clinical Informatics, pp. 293–300. Elsevier (2017). https://doi.org/10.1016/B978-0-12-809523-2.00020-0

  9. Page, T.: A forecast of the adoption of wearable technology. Int. J. Technol. Diffus. 6(2), 12–29 (2015). https://doi.org/10.4018/IJTD.2015040102

    Article  Google Scholar 

  10. Wright, R., Keith, L.: Wearable technology: if the tech fits, wear it. J. Electron. Resour. Med. Libr. 11(4), 204–216 (2014). https://doi.org/10.1080/15424065.2014.969051

    Article  Google Scholar 

  11. Reeder, B., David, A.: Health at hand: a systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 63, 269–276 (2016). https://doi.org/10.1016/j.jbi.2016.09.001

    Article  Google Scholar 

  12. Hemapriya, D., Viswanath, P., Mithra, V.M., Nagalakshmi, S., Umarani, G.: Wearable medical devices—design challenges and issues. In: 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), pp. 1–6. IEEE (2017). https://doi.org/10.1109/IGEHT.2017.8094096

  13. Jung, Y., Kim, S., Choi, B.: Consumer valuation of the wearables: the case of smartwatches. Comput. Hum. Behav. 63(2016), 899–905 (2016). https://doi.org/10.1016/j.chb.2016.06.040

    Article  Google Scholar 

  14. Chuah, S.H.-W., Rauschnabel, P.A., Krey, N., Nguyen, B., Ramayah, T., Lade, S.: Wearable technologies: the role of usefulness and visibility in smartwatch adoption. Comput. Hum. Behav. 65, 276–284 (2016). https://doi.org/10.1016/j.chb.2016.07.047

    Article  Google Scholar 

  15. Dehghani, M.: Exploring the motivational factors on continuous usage intention of smartwatches among actual users. Behav. Inform. Technol. 37(2), 145–158 (2018). https://doi.org/10.1080/0144929X.2018.1424246

    Article  Google Scholar 

  16. Araujo de Carvalho, I., Epping-Jordan, J., Pot, A.M., Kelley, E., Toro, N., Thiyagarajan, J.A., Beard, J.R.: Organizing integrated health-care services to meet older people’s needs. Bull. World Health Organ. 95(11), 756–763 (2017). https://doi.org/10.2471/BLT.16.187617

    Article  Google Scholar 

  17. Do, H.M., Pham, M., Sheng, W., Yang, D., Liu, M.: RiSH: a robot-integrated smart home for elderly care. Rob. Auton. Syst. 101, 74–92 (2018). https://doi.org/10.1016/j.robot.2017.12.008

    Article  Google Scholar 

  18. World Health Organization: World Report on Ageing and Health. Luxembourg (2015)

    Google Scholar 

  19. Steven Kohn, M.: Wearable devices and personalized healthcare. Trends Cardiovasc. Med. 28(2), 151–152 (2018). https://doi.org/10.1016/j.tcm.2017.09.001

    Article  Google Scholar 

  20. Seshadri, D.R., Rowbottom, J.R., Drummond, C., Voos, J.E., Craker, J.: A review of wearable technology: Moving beyond the hype: from need through sensor implementation. In: 2016 8th Cairo International Biomedical Engineering Conference (CIBEC), pp. 52–55. IEEE (2016). https://doi.org/10.1109/CIBEC.2016.7836118

  21. Erdmier, C., Hatcher, J., Lee, M.: Wearable device implications in the healthcare industry. J. Med. Eng. Technol. 40(4), 141–148 (2016). https://doi.org/10.3109/03091902.2016.1153738

    Article  Google Scholar 

  22. Lee, J., Kim, D., Ryoo, H.-Y., Shin, B.-S.: Sustainable wearables: wearable technology for enhancing the quality of human life. Sustainability 8(5), 466 (2016). https://doi.org/10.3390/su8050466

    Article  Google Scholar 

  23. Wu, J., Li, H., Cheng, S., Lin, Z.: The promising future of healthcare services: when big data analytics meets wearable technology. Inf. Manag. 53(8), 1020–1033 (2016). https://doi.org/10.1016/j.im.2016.07.003

    Article  Google Scholar 

  24. Hentschel, M.A., Haaksma, M.L., van de Belt, T.H.: Wearable technology for the elderly: Underutilized solutions. Eur. Geriatr. Med. 7(5), 399–401 (2016). https://doi.org/10.1016/j.eurger.2016.07.008

    Article  Google Scholar 

  25. Zheng, J., Shen, Y., Zhang, Z., Wu, T., Zhang, G., Lu, H.: Emerging wearable medical devices towards personalized healthcare. In: Proceedings of the 8th International Conference on Body Area Networks, pp. 427–431. ACM (2013). https://doi.org/10.4108/icst.bodynets.2013.253725

  26. Haghi, M., Thurow, K., Stoll, R.: Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthc. Inf. Res. 23(1), 4 (2017). https://doi.org/10.4258/hir.2017.23.1.4

    Article  Google Scholar 

  27. Aileni, R.M., Valderrama, A.C., Strungaru, R.: Wearable electronics for elderly health monitoring and active living. In: Ambient Assisted Living and Enhanced Living Environments, 1st ed., pp. 247–269. Elsevier (2017). https://doi.org/10.1016/B978-0-12-805195-5.00010-7

  28. Godfrey, A., Hetherington, V., Shum, H., Bonato, P., Lovell, N.H., Stuart, S.: From A to Z: wearable technology explained. Maturitas 113(April), 40–47 (2018). https://doi.org/10.1016/j.maturitas.2018.04.012

    Article  Google Scholar 

  29. Li, H., Wu, J., Gao, Y., Shi, Y.: Examining individuals’ adoption of healthcare wearable devices: an empirical study from privacy calculus perspective. Int. J. Med. Inform. 88(555), 8–17 (2016). https://doi.org/10.1016/j.ijmedinf.2015.12.010

    Article  Google Scholar 

  30. Cella, M., Okruszek, Ł., Lawrence, M., Zarlenga, V., He, Z., Wykes, T.: Using wearable technology to detect the autonomic signature of illness severity in schizophrenia. Schizophr. Res. 195, 537–542 (2018). https://doi.org/10.1016/j.schres.2017.09.028

    Article  Google Scholar 

  31. Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectron. 90, 298–307. (2017). https://doi.org/10.1016/j.bios.2016.12.001

  32. Dehghani, M., Dangelico, R.M.: Smart wearable technologies: current status and market orientation through a patent analysis. In: 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 1570–1575. IEEE (2017). https://doi.org/10.1109/ICIT.2017.7915602

  33. Kim, Y.K., Wang, H., Mahmud, M.S.: Wearable body sensor network for health care applications. In: Smart Textiles and Their Applications, pp. 161–184. Elsevier (2016). https://doi.org/10.1016/B978-0-08-100574-3.00009-6

  34. Liu, L., Stroulia, E., Nikolaidis, I., Miguel-Cruz, A., Rios Rincon, A.: Smart homes and home health monitoring technologies for older adults: a systematic review. Int. J. Med. Informatics 91, 44–59 (2016). https://doi.org/10.1016/j.ijmedinf.2016.04.007

    Article  Google Scholar 

  35. Srizongkhram, S., Shirahada, K., Chiadamrong, N.: Critical factors for adoption of wearable technology for the elderly: case study of Thailand. In: 2018 Portland International Conference on Management of Engineering and Technology (PICMET), pp. 1–9. IEEE (2018). https://doi.org/10.23919/PICMET.2018.8481990

  36. Park, S., Chung, K., Jayaraman, S.: Wearables. In: Wearable Sensors, pp. 1–23. Elsevier (2014). https://doi.org/10.1016/B978-0-12-418662-0.00001-5

  37. Khosravi, P., Ghapanchi, A.H.: Investigating the effectiveness of technologies applied to assist seniors: a systematic literature review. Int. J. Med. Informatics 85(1), 17–26 (2016). https://doi.org/10.1016/j.ijmedinf.2015.05.014

    Article  Google Scholar 

  38. Qi, J., Yang, P., Min, G., Amft, O., Dong, F., Xu, L.: Advanced internet of things for personalised healthcare systems: a survey. Perv. Mob. Comput. 41, 132–149 (2017). https://doi.org/10.1016/j.pmcj.2017.06.018

    Article  Google Scholar 

  39. Kekade, S., Hseieh, C.-H., Islam, M.M., Atique, S., Mohammed Khalfan, A., Li, Y.-C., Abdul, S.S.: The usefulness and actual use of wearable devices among the elderly population. Comput. Methods Programs Biomed. 153, 137–159 (2018). https://doi.org/10.1016/j.cmpb.2017.10.008

    Article  Google Scholar 

  40. Godfrey, A.: Wearables for independent living in older adults: gait and falls. Maturitas 100, 16–26 (2017). https://doi.org/10.1016/j.maturitas.2017.03.317

    Article  Google Scholar 

  41. O’Brien, T., Troutman-Jordan, M., Hathaway, D., Armstrong, S., Moore, M.: Acceptability of wristband activity trackers among community dwelling older adults. Geriatr. Nurs. 36(2), S21–S25 (2015). https://doi.org/10.1016/j.gerinurse.2015.02.019

    Article  Google Scholar 

  42. Moufawad el Achkar, C., Lenoble-Hoskovec, C., Paraschiv-Ionescu, A., Major, K., Büla, C., Aminian, K.: Instrumented shoes for activity classification in the elderly. Gait Posture 44, 12–17 (2016). https://doi.org/10.1016/j.gaitpost.2015.10.016

    Article  Google Scholar 

  43. Jacelon, C.S., Hanson, A.: Older adults’ participation in the development of smart environments: an integrated review of the literature. Geriatr. Nurs. 34(2), 116–121 (2013). https://doi.org/10.1016/j.gerinurse.2012.11.001

    Article  Google Scholar 

  44. Beard, J.R., Officer, A., De Carvalho, I.A., Sadana, R., Pot, A.M., Michel, J.P., Lloyd-Sherlock, P., Epping-Jordan, J.E., Peeters, G.G., Mahanani, W.R., Thiyagarajan, J.A.: The World report on ageing and health: a policy framework for healthy ageing. Lancet 387(10033), 2145–2154 (2016). https://doi.org/10.1016/S0140-6736(15)00516-4

    Article  Google Scholar 

  45. World Health Organization: Ageing and Life-Course—What is Healthy Ageing? (2019). Retrieved 13 Sept 2019, from https://www.who.int/ageing/healthy-ageing/en/

  46. Beard, J.R., Officer, A.M., Cassels, A.K.: The world report on ageing and health. Gerontologist 56(Suppl 2), S163–S166 (2016). https://doi.org/10.1093/geront/gnw037

    Article  Google Scholar 

  47. Amado, C.A.F., São José, J.M.S., Santos, S.P.: Measuring active ageing: a data envelopment analysis approach. Eur. J. Oper. Res. 255(1), 207–223 (2016). https://doi.org/10.1016/j.ejor.2016.04.048

    Article  Google Scholar 

  48. Robbins, T.D., Keung, S.N.L.C., Arvanitis, T.N.: E-health for active ageing; a systematic review. Maturitas 114, 34–40 (2018). https://doi.org/10.1016/j.maturitas.2018.05.008

    Article  Google Scholar 

  49. Sullivan, A.N., Lachman, M.E.: Behavior change with fitness technology in sedentary adults: a review of the evidence for increasing physical activity. Front. Pub. Health 4, 289 (2017). https://doi.org/10.3389/fpubh.2016.00289

    Article  Google Scholar 

  50. Muellmann, S., Forberger, S., Möllers, T., Bröring, E., Zeeb, H., Pischke, C.R.: Effectiveness of eHealth interventions for the promotion of physical activity in older adults: a systematic review. Prev. Med. 108, 93–110 (2018). https://doi.org/10.1016/j.ypmed.2017.12.026

  51. Thompson, W.G., Kuhle, C.L., Koepp, G.A., McCrady-Spitzer, S.K., Levine, J.A.: “Go4Life” exercise counseling, accelerometer feedback, and activity levels in older people. Arch. Gerontol. Geriatr. 58(3), 314–319 (2014). https://doi.org/10.1016/j.archger.2014.01.004

    Article  Google Scholar 

  52. Jonkman, N.H., van Schooten, K.S., Maier, A.B., Pijnappels, M.: eHealth interventions to promote objectively measured physical activity in community-dwelling older people. Maturitas 113(March), 32–39 (2018). https://doi.org/10.1016/j.maturitas.2018.04.010

    Article  Google Scholar 

  53. Cooper, C., Gross, A., Brinkman, C., Pope, R., Allen, K., Hastings, S., Bogen, B.E., Goode, A.P.: The impact of wearable motion sensing technology on physical activity in older adults. Exp. Gerontol. 2(112), 9–19 (2018). https://doi.org/10.1016/j.exger.2018.08.002

    Article  Google Scholar 

  54. Tocci, F.L., Morey, M.C., Caves, K.M., Deberry, J., Leahy, G.D., Hall, K.: Are older adults ready for wireless physical activity tracking devices? A comparison of commonly used tracking devices. J. Am. Geriatr. Soc. 64(1), 226–228 (2016). https://doi.org/10.1111/jgs.13895

    Article  Google Scholar 

  55. Kim, K., Gollamudi, S.S., Steinhubl, S.: Digital technology to enable aging in place. Exp. Gerontol. 88, 25–31 (2017). https://doi.org/10.1016/j.exger.2016.11.013

    Article  Google Scholar 

  56. World Health Organization: Integrated Care for Older People. World Health Organization, Geneva (2017)

    Google Scholar 

  57. World Health Organization: Global strategy and action plan on ageing and health. World Health Organization, Geneva (2017). Retrieved from https://www.who.int/ageing/WHO-GSAP-2017.pdf?ua=1%0Ahttp://www.who.int/ageing/WHO-GSAP-2017.pdf?ua=1

    Google Scholar 

  58. Nasir, S., Yurder, Y.: Consumers’ and physicians’ perceptions about high tech wearable health products. Proc. Soc. Behav. Sci. 195, 1261–1267 (2015). https://doi.org/10.1016/j.sbspro.2015.06.279

    Article  Google Scholar 

  59. Casselman, J., Onopa, N., Khansa, L.: Wearable healthcare: Lessons from the past and a peek into the future. Telematics Inform. 34(7), 1011–1023 (2017). https://doi.org/10.1016/j.tele.2017.04.011

    Article  Google Scholar 

  60. Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., Campo, E.: Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56(3), 137–156 (2012). https://doi.org/10.1016/j.artmed.2012.09.003

    Article  Google Scholar 

  61. Mostaghel, R.: Innovation and technology for the elderly: systematic literature review. J. Bus. Res. 69(11), 4896–4900 (2016). https://doi.org/10.1016/j.jbusres.2016.04.049

    Article  Google Scholar 

  62. Kalantari, M.: Consumers’ adoption of wearable technologies: literature review, synthesis, and future research agenda. Int. J. Technol. Mark. 12(3), 274–306 (2017). https://doi.org/10.1504/IJTMKT.2017.089665

    Article  Google Scholar 

  63. Pal, D., Funilkul, S., Charoenkitkarn, N., Kanthamanon, P.: Internet-of-things and smart homes for elderly healthcare: an end user perspective. IEEE Access 6, 10483–10496 (2018). https://doi.org/10.1109/ACCESS.2018.2808472

    Article  Google Scholar 

  64. Cimperman, M., Makovec Brenčič, M., Trkman, P.: Analyzing older users’ home telehealth services acceptance behavior—applying an Extended UTAUT model. Int. J. Med. Inform. 90, 22–31 (2016). https://doi.org/10.1016/j.ijmedinf.2016.03.002

    Article  Google Scholar 

  65. Kim, K.J., Shin, D.-H.: An acceptance model for smart watches. Internet Res. 25(4), 527–541 (2015). https://doi.org/10.1108/IntR-05-2014-0126

    Article  Google Scholar 

  66. Zhang, M., Luo, M., Nie, R., Zhang, Y.: Technical attributes, health attribute, consumer attributes and their roles in adoption intention of healthcare wearable technology. Int. J. Med. Inform. 108(August), 97–109 (2017). https://doi.org/10.1016/j.ijmedinf.2017.09.016

    Article  Google Scholar 

  67. Yang, H., Yu, J., Zo, H., Choi, M.: User acceptance of wearable devices: an extended perspective of perceived value. Telematics Inform. 33(2), 256–269 (2016). https://doi.org/10.1016/j.tele.2015.08.007

    Article  Google Scholar 

  68. Marakhimov, A., Joo, J.: Consumer adaptation and infusion of wearable devices for healthcare. Comput. Hum. Behav. 76, 135–148 (2017). https://doi.org/10.1016/j.chb.2017.07.016

    Article  Google Scholar 

  69. Nelson, E.C., Verhagen, T., Noordzij, M.L.: Health empowerment through activity trackers: an empirical smart wristband study. Comput. Hum. Behav. 62, 364–374 (2016). https://doi.org/10.1016/j.chb.2016.03.065

    Article  Google Scholar 

  70. Koo, S.H., Fallon, K.: Explorations of wearable technology for tracking self and others. Fashion Text. 5(1), 8 (2018). https://doi.org/10.1186/s40691-017-0123-z

    Article  Google Scholar 

  71. Carmines, E.G., Zeller, R.A.: Reliability and Validity Assessment. SAGE, London (1979)

    Book  Google Scholar 

  72. Kimberlin, C.L., Winterstein, A.G.: Validity and reliability of measurement instruments used in research. Am. J. Health-Syst. Pharm. 65(23), 2276–2284 (2008). https://doi.org/10.2146/ajhp070364

    Article  Google Scholar 

  73. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis. Pearson Education Limited, Essex (2014)

    Google Scholar 

  74. Matsunaga, M.: How to factor-analyze your data right: Do’s, don’ts, and how-to’s. Int. J. Psychol. Res. 3(1), 97–110 (2010). Retrieved from http://mvint.usbmed.edu.co:8002/ojs/index.php/web/article/viewArticle/464

  75. Fabrigar, L.R., Wegener, D.T., MacCallum, R.C., Strahan, E.J.: Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 4(3), 272–299 (1999). https://doi.org/10.1037/1082-989X.4.3.272

    Article  Google Scholar 

  76. MacCallum, R.C., Widaman, K.F., Zhang, S., Hong, S.: Sample size in factor analysis. Psychol. Methods 4(1), 84–99 (1999). https://doi.org/10.1037/1082-989X.4.1.84

    Article  Google Scholar 

  77. Myers, N.D., Ahn, S., Jin, Y.: Sample size and power estimates for a confirmatory factor analytic model in exercise and sport. Res. Q. Exerc. Sport 82(3), 412–423 (2011). https://doi.org/10.1080/02701367.2011.10599773

    Article  Google Scholar 

  78. Pett, M.A., Lackey, N.R., Sullivan, J.: Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research. SAGE, Thousand Oaks, CA (2003)

    Book  Google Scholar 

  79. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 4th edn. Allyn and Bacon, Boston (2001)

    Google Scholar 

  80. Yong, A.G., Pearce, S.: A beginner’s guide to factor analysis: focusing on exploratory factor analysis. Tutor. Quant. Methods Psychol. 9(2), 79–94 (2013). https://doi.org/10.20982/tqmp.09.2.p079

  81. Williams, B., Onsman, A., Brown, T.: Exploratory factor analysis: a five-step guide for novices. Australas. J. Paramed. 8(3), 1–13 (2012). Retrieved from http://ro.ecu.edu.au/jephc/vol8/iss3/1

  82. Brown, J.D.: Choosing the right type of rotation in PCA and EFA. JALT Test. Eval. SIG Newsl. 13(3), 20–25 (2009). Retrieved from https://jalt.org/test/PDF/Brown31.pdf

  83. Beavers, A.S., Lounsbury, J.W., Richards, J.K., Huck, S.W., Skolits, G.J., Esquivel, S.L.: Practical considerations for using exploratory factor analysis in educational research. Practical Assessment, Research & Evaluation 18(1), 6 (2013). https://doi.org/10.7275/qv2q-rk76

    Article  Google Scholar 

  84. O’Brien, R.M.: Identification of simple measurement models with multiple latent variables and correlated errors. Sociol. Methodol. 24(1994), 137–170 (1994). https://doi.org/10.2307/270981

    Article  Google Scholar 

  85. Bollen, K.A.: Latent variables in psychology and the social sciences. Annu. Rev. Psychol. 53(1), 605–634 (2002). https://doi.org/10.1146/annurev.psych.53.100901.135239

    Article  Google Scholar 

  86. van Hoof, J., Kort, H.S.M., Rutten, P.G.S., Duijnstee, M.S.H.: Ageing-in-place with the use of ambient intelligence technology: perspectives of older users. Int. J. Med. Informatics 80(5), 310–331 (2011). https://doi.org/10.1016/j.ijmedinf.2011.02.010

    Article  Google Scholar 

  87. Golant, S.M.: A theoretical model to explain the smart technology adoption behaviors of elder consumers (Elderadopt). J. Aging Stud. 42(August), 56–73 (2017). https://doi.org/10.1016/j.jaging.2017.07.003

    Article  Google Scholar 

  88. Sezgin, E., Özkan-Yildirim, S., Yildirim, S.: Investigation of physicians’ awareness and use of mHealth apps: a mixed method study. Health Policy Technol. 6(3), 251–267 (2017). https://doi.org/10.1016/j.hlpt.2017.07.007

    Article  Google Scholar 

  89. Li, J., Ma, Q., Chan, A.H., Man, S.S.: Health monitoring through wearable technologies for older adults: smart wearables acceptance model. Appl. Ergon. 75, 162–169 (2019). https://doi.org/10.1016/j.apergo.2018.10.006

    Article  Google Scholar 

  90. Vincent, C.J., Li, Y., Blandford, A.: Integration of human factors and ergonomics during medical device design and development: it’s all about communication. Appl. Ergon. 45(3), 413–419 (2014). https://doi.org/10.1016/j.apergo.2013.05.009

    Article  Google Scholar 

  91. Park, E., Kim, K.J., Kwon, S.J.: Understanding the emergence of wearable devices as next-generation tools for health communication. Inf. Technol. People 29(4), 717–732 (2016). https://doi.org/10.1108/ITP-04-2015-0096

    Article  Google Scholar 

  92. Wu, L.-H., Wu, L.-C., Chang, S.-C.: Exploring consumers’ intention to accept smartwatch. Comput. Hum. Behav. 64, 383–392 (2016). https://doi.org/10.1016/j.chb.2016.07.005

    Article  Google Scholar 

  93. Patel, A.D., Moss, R., Rust, S.W., Patterson, J., Strouse, R., Gedela, S., Haines, J., Lin, S.M.: Patient-centered design criteria for wearable seizure detection devices. Epilepsy Behav. 1(64), 116–121 (2016). https://doi.org/10.1016/j.yebeh.2016.09.012

    Article  Google Scholar 

  94. Holden, R.J., Kulanthaivel, A., Purkayastha, S., Goggins, K.M., Kripalani, S.: Know thy eHealth user: development of biopsychosocial personas from a study of older adults with heart failure. Int. J. Med. Inform. 1(108), 158–167 (2017). https://doi.org/10.1016/j.ijmedinf.2017.10.006

    Article  Google Scholar 

  95. Jeong, S.C., Kim, S.-H., Park, J.Y., Choi, B.: Domain-specific innovativeness and new product adoption: a case of wearable devices. Telematics Inform. 34(5), 399–412 (2017). https://doi.org/10.1016/j.tele.2016.09.001

    Article  Google Scholar 

  96. Kim, K.J.: Shape and size matter for smartwatches: Effects of screen shape, screen size, and presentation mode in wearable communication. J. Comput. Mediated Commun. 22(3), 124–140 (2017). https://doi.org/10.1111/jcc4.12186

    Article  Google Scholar 

  97. Puri, A., Kim, B., Nguyen, O., Stolee, P., Tung, J., Lee, J.: User acceptance of wrist-worn activity trackers among community-dwelling older adults: mixed method study. JMIR mHealth uHealth 5(11), e173 (2017). https://doi.org/10.2196/mhealth.8211

    Article  Google Scholar 

  98. Shieh, M.-D., Hsiao, H.-C., Lin, Y.-H., Lin, J.-Y.: A study of the elderly people’s perception of wearable device forms. J. Interdisc. Math. 20(3), 789–804 (2017). https://doi.org/10.1080/09720502.2016.1258839

    Article  Google Scholar 

  99. Privitera, M.B., Evans, M., Southee, D.: Human factors in the design of medical devices—approaches to meeting international standards in the European Union and USA. Appl. Ergon. 59, 251–263 (2017). https://doi.org/10.1016/j.apergo.2016.08.034

    Article  Google Scholar 

  100. Adapa, A., Nah, F.F.-H., Hall, R.H., Siau, K., Smith, S.N.: Factors influencing the adoption of smart wearable devices. Int. J Hum. Comput. Inter. 34(5), 399–409 (2018). https://doi.org/10.1080/10447318.2017.1357902

    Article  Google Scholar 

  101. Hsiao, K.-L., Chen, C.-C.: What drives smartwatch purchase intention? Perspectives from hardware, software, design, and value. Telematics Inform. 35(1), 103–113 (2018). https://doi.org/10.1016/j.tele.2017.10.002

    Article  Google Scholar 

  102. Hagedorn, T.J., Krishnamurty, S., Grosse, I.R.: An information model to support user-centered design of medical devices. J. Biomed. Inform. 62, 181–194 (2016). https://doi.org/10.1016/j.jbi.2016.07.010

    Article  Google Scholar 

  103. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manage. Sci. 46(2), 186–204 (2000). https://doi.org/10.1287/mnsc.46.2.186.11926

    Article  Google Scholar 

  104. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39(2), 273–315 (2008). https://doi.org/10.1111/j.1540-5915.2008.00192.x

    Article  Google Scholar 

  105. Lunney, A., Cunningham, N.R., Eastin, M.S.: Wearable fitness technology: a structural investigation into acceptance and perceived fitness outcomes. Comput. Hum. Behav. 65, 114–120 (2016). https://doi.org/10.1016/j.chb.2016.08.007

    Article  Google Scholar 

  106. Choi, J., Kim, S.: Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Comput. Hum. Behav. 63, 777–786 (2016). https://doi.org/10.1016/j.chb.2016.06.007

    Article  Google Scholar 

  107. Pfeiffer, J., Von Entress-Fuersteneck, M., Urbach, N.,Buchwald, A.: Quantify-me: Consumer acceptance of wearable self-tracking devices. In: Proceedings of the 24th European Conference on Information Systems, p. 99 (2016). Retrieved from https://aisel.aisnet.org/ecis2016_rp/99

  108. Nascimento, B., Oliveira, T., Tam, C.: Wearable technology: what explains continuance intention in smartwatches? J. Retail. Consum. Serv. 43(March), 157–169 (2018). https://doi.org/10.1016/j.jretconser.2018.03.017

    Article  Google Scholar 

  109. Lee, S.Y., Lee, K.: Factors that influence an individual’s intention to adopt a wearable healthcare device: the case of a wearable fitness tracker. Technol. Forecast. Soc. Chang. 129(February), 154–163 (2018). https://doi.org/10.1016/j.techfore.2018.01.002

    Article  Google Scholar 

  110. Pal, D., Funilkul, S., Vanijja, V.: The future of smartwatches: assessing the end-users’ continuous usage using an extended expectation-confirmation model. Univ. Access Inf. Soc. (2018). https://doi.org/10.1007/s10209-018-0639-z

    Article  Google Scholar 

  111. Zhang, Y., Rau, P.-L.P.: Playing with multiple wearable devices: exploring the influence of display, motion and gender. Comput. Hum. Behav. 50, 148–158 (2015). https://doi.org/10.1016/j.chb.2015.04.004

    Article  Google Scholar 

  112. Peek, S.T., Luijkx, K.G., Rijnaard, M.D., Nieboer, M.E., van der Voort, C.S., Aarts, S., van Hoof, J., Vrijhoef, H.J., Wouters, E.J.: Older adults’ reasons for using technology while aging in place. Gerontology 62(2), 226–237 (2016). https://doi.org/10.1159/000430949

    Article  Google Scholar 

  113. Wu, J.-H., Wang, S.-C., Lin, L.-M.: Mobile computing acceptance factors in the healthcare industry: a structural equation model. Int. J. Med. Informatics 76(1), 66–77 (2007). https://doi.org/10.1016/j.ijmedinf.2006.06.006

    Article  Google Scholar 

  114. Hoque, R., Sorwar, G.: Understanding factors influencing the adoption of mHealth by the elderly: an extension of the UTAUT model. Int. J. Med. Inform. 101, 75–84 (2017). https://doi.org/10.1016/j.ijmedinf.2017.02.002

  115. Karahoca, A., Karahoca, D., Aksöz, M.: Examining intention to adopt to internet of things in healthcare technology products. Kybernetes 47(4), 742–770 (2018). https://doi.org/10.1108/K-02-2017-0045

    Article  Google Scholar 

  116. Gao, Y., Li, H., Luo, Y.: An empirical study of wearable technology acceptance in healthcare. Ind. Manage. Data Syst. 115(9), 1704–1723 (2015). https://doi.org/10.1108/IMDS-03-2015-0087

    Article  Google Scholar 

  117. Motti, V.G.,Caine, K.: Users’ privacy concerns about wearables. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8976, pp. 231–244 (2015). https://doi.org/10.1007/978-3-662-48051-9_17

  118. Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., Seneviratne, A.: A survey of wearable devices and challenges. IEEE Commun. Surv. Tutor. 19(4), 2573–2620 (2017). https://doi.org/10.1109/COMST.2017.2731979

    Article  Google Scholar 

  119. Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., Shamshirband, S.: Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inform. J. 18(2), 113–122 (2017). https://doi.org/10.1016/j.eij.2016.11.001

    Article  Google Scholar 

  120. Ward, R.: The application of technology acceptance and diffusion of innovation models in healthcare informatics. Health Policy Technol. 2(4), 222–228 (2013). https://doi.org/10.1016/j.hlpt.2013.07.002

    Article  Google Scholar 

  121. Renaud, K., van Biljon, J.: Predicting technology acceptance and adoption by the elderly. In: Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists and Information Technologists on IT research in developing countries riding the wave of technology - SAICSIT ’08, vol. 338, pp. 210–219. ACM Press, New York, New York, USA (2008). https://doi.org/10.1145/1456659.1456684

  122. Holden, R.J., Karsh, B.-T.: The technology acceptance model: its past and its future in health care. J. Biomed. Inform. 43(1), 159–172 (2010). https://doi.org/10.1016/j.jbi.2009.07.002

    Article  Google Scholar 

  123. Baig, M.M., GholamHosseini, H., Moqeem, A.A., Mirza, F., Lindén, M.: A systematic review of wearable patient monitoring systems—current challenges and opportunities for clinical adoption. J. Med. Syst. 41(7), 115 (2017). https://doi.org/10.1007/s10916-017-0760-1

    Article  Google Scholar 

  124. Iqbal, M.H., Aydin, A., Brunckhorst, O., Dasgupta, P., Ahmed, K.: A review of wearable technology in medicine. J. R. Soc. Med. 109(10), 372–380 (2016). https://doi.org/10.1177/0141076816663560

    Article  Google Scholar 

  125. Gücin, N.Ö., Berk, Ö.S.: Technology acceptance in health care: an integrative review of predictive factors and intervention programs. Procedia Soc. Behav. Sci. 195, 1698–1704 (2015). https://doi.org/10.1016/j.sbspro.2015.06.263

    Article  Google Scholar 

  126. Or, C.K.L., Karsh, B.-T.: A systematic review of patient acceptance of consumer health information technology. J. Am. Med. Inform. Assoc. 16(4), 550–560 (2009). https://doi.org/10.1197/jamia.M2888

    Article  Google Scholar 

  127. Legris, P., Ingham, J., Collerette, P.: Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 40(3), 191–204 (2003). https://doi.org/10.1016/S0378-7206(01)00143-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Degerli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Degerli, M., Ozkan Yildirim, S. (2021). Enablers for IoT Regarding Wearable Medical Devices to Support Healthy Living: The Five Facets. In: Marques, G., Bhoi, A.K., Albuquerque, V.H.C.d., K.S., H. (eds) IoT in Healthcare and Ambient Assisted Living. Studies in Computational Intelligence, vol 933. Springer, Singapore. https://doi.org/10.1007/978-981-15-9897-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9897-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9896-8

  • Online ISBN: 978-981-15-9897-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics