Skip to main content

Performance Estimation of Defected Ternary Photonic Crystal-Based Bandpass Filter Beyond 100 THz for All-Optical Circuit

  • Chapter
  • First Online:
Emerging Trends in Terahertz Engineering and System Technologies

Abstract

Characterization of photonic crystal-based defected bandpass filter is analytically computed beyond 100 THz region to get the potential advantage of minimum attenuation window. One-dimensional structure is considered for simulation, which gives the advantage of fabrication simplicity, and Butterworth filter is designed centered at 1550 nm taking into account of both normal and polarized incidences of electromagnetic wave. Structural parameters and incidence angles (within permissible limit) are varied to analyze the modulation of filter performance. Point defect within the 5% level is considered at the surface which will not degraded the mechanical properties of the structure, but can enrich the filter performance in terms of reduction of ripple in passband, and making blueshift or redshift of passband as per the requirement of specific applications. Simulation is carried out for SiO2/air/TiO2 structure using transfer matrix technique (TMT), and transmittance is evaluated as a function of incidence wavelength in the desired region. Computational findings reveal that response in terms of bandwidth tailoring and noise rejection is better for p-polarized (TM) wave incidence than s-polarized (TE) wave. Optimum lateral dimension is envisaged for different successive layers, which are such that slightly higher than the computed magnitude basically eliminates the effect of middle slab, i.e., the ternary layer will equivalent to binary PhC. Results are imperative for Butterworth filter design when signal and noise bands are intimately sequenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Loudon, The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233–245 (1970)

    Article  ADS  Google Scholar 

  2. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)

    Article  ADS  Google Scholar 

  3. I.S. Fogel, J.M. Bendickson, M.D. Tocci, M.J. Bloemer, M. Scalora, C.M. Bowden, J.P. Dowling, Spontaneous emission and nonlinear effects in photonic bandgap materials. Pure Appl Opt: J Eur Opt Soc Part A 7, 393–408 (1998)

    Article  ADS  Google Scholar 

  4. R. Dey, M. Banerjee, A. Das, A. Deyasi, Effect of incidence angle on optical bandwidth in ternary photonic crystal for filter application, in International Conference on Industry Innovative Innovations in Science, Engineering and Technology ed. by S. Bhattacharyya, et al. (Springer series of Lecture Notes in Networks and Systems, 2016)

    Google Scholar 

  5. F. Villa-Villa, J.A. Gaspar-Armenta, A. Mendoza-Suárez, Surface modes in one dimensional photonic crystals that include left handed materials. J. Electromagn. Waves Appl. 21, 485–499 (2007)

    Article  Google Scholar 

  6. A. Edalati, H. Boutayeb, T.A. Denidni, Band structure analysis of reconfigurable metallic crystals: effect of active elements. J. Electromagn. Waves Appl. 21, 2421–2430 (2007)

    Article  Google Scholar 

  7. J.C. Chen, H.A. Haus, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Optical filters from photonic band gap air bridges. J. Lightwave Technol. 14, 2575–2580 (1996)

    Article  ADS  Google Scholar 

  8. S. Golmohammadi, M.K. Moravvej-Farshi, A. Rostami, A. Zarifkar, Spectral analysis of the fbonacci-class one-dimensional quasi-periodic structures. Prog. Electromagn. Res. 75, 69–84 (2007)

    Article  Google Scholar 

  9. D. Mao, Z. Ouyang, J.C. Wang, A photonic-crystal polarizer integrated with the functions of narrow bandpass and narrow transmission angle filtering. Appl. Phys. B 90, 127–131 (2008)

    Article  ADS  Google Scholar 

  10. S. Mukherjee, A. Roy, A. Deyasi, S. Ghosal, Dependence of photonic bandgap on material composition for two-dimensional photonic crystal with triangular geometry, ed. by A. Acharyya, Foundations and Frontiers in Computer, Communication and Electrical Engineering, Chapter 52 (CRC Press, 2016), pp. 259–263

    Google Scholar 

  11. M. Banerjee, R. Dey, A. Deyasi, S. Dey, A. Das, Butterworth filter design using ternary photonic crystal structure under polarized incidence of E.M Wave. Springer Proc. Phys.: Adv. Opt. Sci. Eng. 24, 205–210 (2017)

    Article  Google Scholar 

  12. D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, Observation of total omnidirectional reflection from a one-dimensional dielectric lattice. Appl. Phys. A 68, 25–28 (1999)

    Article  ADS  Google Scholar 

  13. S.R. Shepard, Photonic crystal fiber for the simultaneous transmission of information and power in optical smart grids. Adv. Photon.: paper JTu4A. 29 (2016)

    Google Scholar 

  14. V. Kaur, S. Singh, Hybrid design of photonic crystal fiber sensor for lower indexed chemicals, in 13th International Conference on Fiber Optics and Photonics: paper Th3A, vol. 53 (2016)

    Google Scholar 

  15. H. Wang, Y. Chi, Y. Chen, G. Lin, Tri-color optical transmitter with embedding 28-GHz millimeter-wave carrier for 5G mobile over fiber, in Conference on Lasers and Electro-Optics: paper SM1O, vol. 1 (2017)

    Google Scholar 

  16. K. Nozaki, S. Matsuo, T. Fujii, K. Takeda, E. Kuramochi, A. Shinya, M. Notomi, Forward-biased photonic crystal photodetector towards amplifier-free bias-free receiver, in Conference on Lasers and Electro-Optics: paper STh4N, vol. 1 (2017)

    Google Scholar 

  17. J. Guo, R.A. Norte, S. Gröblacher, Integrated optical force sensors using focusing photonic crystal arrays. Opt. Express 25, 9196–9203 (2017)

    Article  ADS  Google Scholar 

  18. S. Hu, M. Khater, R. Salas-Montiel, E. Kratschmer, S. Engelmann, W. Green, S.M. Weiss, Bowtie photonic crystal with deep subwavelength mode confinement in a dielectric material, in Conference on Lasers and Electro-Optics, paper FTh3H.2 (2017)

    Google Scholar 

  19. R.S. Daveau, K.C. Balram, T. Pregnolato, J. Liu, E.H. Lee, J.D. Song, V. Verma, R. Mirin, S.W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, P. Lodahl, Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica 4, 178–184 (2017)

    Article  ADS  Google Scholar 

  20. J. Hansryd, P.A. Andrekson, M. Westlund, J. Li, P.O. Hedekvist, Fiber-based optical parametric amplifiers and their applications. IEEE J. Select. Top. Quantum Electron. 8, 506–520 (2002)

    Article  ADS  Google Scholar 

  21. P. Reininger, S. Kalchmair, R. Gansch, A.M. Andrews, H. Detz, T. Zederbauer, S.I. Ahn, W. Schrenk, G. Strasser, Optimized photonic crystal design for quantum well infrared photodetectors. Proc. SPIE 8425, 84250A (2012)

    Article  ADS  Google Scholar 

  22. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen, High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Express 11, 818–823 (2003)

    Article  ADS  Google Scholar 

  23. V. Liu, S. Fan, Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk. Opt. Express 21, 8069–8075 (2013)

    Article  ADS  Google Scholar 

  24. J.A.M. Rojas, J. Alpuente, P. López-Espí, P. García, Accurate model of electromagnetic wave propagation in unidimensional photonic crystals with defects. J. Electromag. Waves Appl. 21, 1037–1051 (2007)

    Article  Google Scholar 

  25. A.H. Aly, M. Ismaeel, E. Abdel-Rahman, Comparative study of the one dimensional dielectric and metallic photonic crystals. Opt. Photon. J. 2, 105–112 (2012)

    Article  Google Scholar 

  26. P. Xu, H.P. Tian, Y.F. Ji, One-dimensional fractal photonic crystal and its characteristics. J. Opt. Soc. Am. B 27, 640–647 (2010)

    Article  ADS  Google Scholar 

  27. L.C. Andreani, M. Agio, D. Bajoni, M. Belotti, M. Galli, G. Guizzetti, A.M. Malvezzi, F. Marabelli, M. Patrini, G. Vecchi, Optical properties and photonic mode dispersion in two-dimensional and waveguide-embedded photonic crystals. Synth. Metals 139, 695–700 (2003)

    Article  Google Scholar 

  28. A. Banerjee, Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Prog. Electromagnet. Res. 89, 11–22 (2009)

    Article  Google Scholar 

  29. Z. Zare, A. Gharaati, Investigation of band gap width in ternary 1d photonic crystal with left-handed layer. Acta Phys. Pol., A 125, 36–38 (2014)

    Article  ADS  Google Scholar 

  30. S. Sharma, R. Kumar, K.S. Singh, D. Jain, Design of an omnidirectional reflector using one dimensional ternary photonic crystal. Int. J. Eng. Techn. Res. (special issue: STET-2014), 90–93 (2014)

    Google Scholar 

  31. Y. Gao, H. Chen, H. Qiu, Q. Lu, C. Huang, Transmission spectra characteristics of 1D photonic crystals with complex dielectric constant. Rare Met. 30, 150–154 (2011)

    Article  Google Scholar 

  32. Y. Li, A. Bhardwaj, R. Wang, S. Jin, L. Coldren, J. Bowers, P. Herczfeld, All-optical ACP-OPLL photonic integrated circuit, in IEEE MTT-S International Microwave Symposium Digest, pp. 1–4 (2011)

    Google Scholar 

  33. N. Segal, S.K. Zur, N. Hendler, T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photon. 9, 180–184 (2011)

    Article  ADS  Google Scholar 

  34. H. Butt, Q. Dai, T.D. Wilkinson, G.A.J. Amaratunga, Photonic crystals and metamaterial filters based on 2D arrays of silicon nanopillars. Prog. Electromagn. Res. 113, 179–194 (2011)

    Article  Google Scholar 

  35. J.L. Volakis, K. Sertel, Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals. Proc. IEEE 99, 1732–1745 (2011)

    Article  Google Scholar 

  36. P. Biswas, A. Deyasi, Calculating transmissivity of defected 1D photonic crystal under oblique incidence of E.M wave for bandpass filter design, in National Conference on Materials, Devices and Circuits in Communication Technology, pp. 16–19 (2016)

    Google Scholar 

  37. A.B. Khanikaev, M.J. Steel, Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt. Express 17, 5265–5272 (2009)

    Article  ADS  Google Scholar 

  38. G.V. Morozov, D.W.L. Sprung, J. Martorell, One-dimensional photonic crystals with a sawtooth refractive index: another exactly solvable potential. New J. Phys. 15, 103009 (2013)

    Article  ADS  Google Scholar 

  39. A.G. Ardakani, Nonreciprocal electromagnetic wave propagation in one-dimensional ternary magnetized plasma photonic crystals. J. Opt. Soc. Am. B 31, 332–339 (2014)

    Article  ADS  Google Scholar 

  40. S. Wang, X. Yang, C.T. Liu, Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures. Phys. Lett. A 378(18–19), 1326–1332 (2014)

    Article  ADS  Google Scholar 

  41. A. Pradana, M. Gerken, Photonic crystal slabs in flexible organic light-emitting diodes. Photon. Res. 3, 32–37 (2015)

    Article  Google Scholar 

  42. A.K.S.O. Hassan, A.S.A. Mohamed, M.M.T. Maghrabi, N.H. Rafat, Optimal design of one-dimensional photonic crystal filters using minimax optimization approach. Appl. Opt. 54, 1399–1409 (2015)

    Article  ADS  Google Scholar 

  43. G.N. Pandey, N. Kumar, K.B. Thapa, S.P. Ojha, Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal. AIP Conf. Proc. 1728, 020310 (2016)

    Article  Google Scholar 

  44. M. Banerjee, R. Dey, A. Deyasi, Effect of defect on bandpass filter characteristics of ternary photonic crystal for normal incidence of E.M wave, material focus 6(3), 310–313 (2017)

    Google Scholar 

  45. A. Deyasi, M. Banerjee, R. Dey, Narrow bandpass optical filter design with defected ternary photonic crystal under p-polarized incidence, in IEEE 2nd International Conference on Devices for Integrated Circuits (2017), pp 95–99

    Google Scholar 

  46. A. Deyasi, A. Sarkar, Variation of optical bandwidth in defected ternary photonic crystal under different polarization conditions. Int. J. Nanoparticles 10(1&2), 27–34 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Deyasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deyasi, A., Sarkar, A. (2021). Performance Estimation of Defected Ternary Photonic Crystal-Based Bandpass Filter Beyond 100 THz for All-Optical Circuit. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H. (eds) Emerging Trends in Terahertz Engineering and System Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-9766-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9766-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9765-7

  • Online ISBN: 978-981-15-9766-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics