Skip to main content

Bioleaching from Coal Wastes and Tailings: A Sustainable Biomining Alternative

  • Chapter
  • First Online:
Bio-valorization of Waste

Abstract

Mineral coal is one of the most employed natural resources that represent potential environmental issues. The mine tailing contains several valuable minerals such as zinc, molybdenum, vanadium, chromium, iron, and copper. Currently, the most part of mine tailings is disposed at large tailing ponds. Another important tailing from mineral coal is fly ash, the main residue from thermoelectric plants, which may also contain valuable minerals. Currently, the most part of coal fly ash produced is used as raw material for cement fabrication or disposed at ash ponds. In this sense, biomining and bioleaching is an economically and environmentally attractive technology that can be used for metal recovery from residues such as mine tailing and coal ash, in line up with the concept of green chemistry. There are sparse data available on bioleaching of coal ash using either autotrophic or heterotrophic microorganisms. Therefore, the aim of this chapter was to describe the key aspects related to biomining and bioleaching of mine tailing and coal ash, pointing out the state of the art and some future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363

    Article  CAS  Google Scholar 

  • Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117–118:1–12

    Article  CAS  Google Scholar 

  • Banerjee I, Burrell B, Reed C, West AC, Banta S (2017) Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol 45:144–155

    Article  CAS  PubMed  Google Scholar 

  • Bankar A, Winey M, Prakash D, Kumar AR, Gosavi S, Kapadnis B, Zinjarde S (2012) Bioleaching of fly ash by the tropical marine yeast, Yarrowia lipolytica NCIM 3589. Appl Biochem Biotechnol 168:2205–2217

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj A, Ting Y-P (2011) From biomining of mineral and ores to bio-urban mining of Industrial waste. In: Fourth environmental technology and management conference, Bandung, Indonesia, 3–4 Nov 2011. https://doi.org/10.13140/2.1.2904.1605

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  • Brierley CL (2008) How will biomining be applied in future? Trans Nonferrous Met Soc Chin 18:1302–1310

    Article  CAS  Google Scholar 

  • Brierley J, Brierley C (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59:233–239

    Article  CAS  Google Scholar 

  • Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97:7543–7552

    Article  CAS  PubMed  Google Scholar 

  • Brombacher C, Bachofen R, Brandl H (1997) Biohydrometallurgical processing of solids: a patent review. Appl Microbiol Biotechnol 48:577–587

    Article  CAS  Google Scholar 

  • Burchart-Korol D, Krawczyk P, Czaplicka-Kolarz K, Turek M, Borkowski W (2014) Development of sustainability assessment method of coal mines. J Sustain Min 13:5–11

    Article  Google Scholar 

  • Campodonico M, Vaisman D, Castro J, Razmilic V, Mercado F, Andrews B, Feist A, Asenjo J (2016) Acidithiobacillus ferrooxidans’s comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications. Metab Eng Commun 3:84–96. https://doi.org/10.1016/j.meteno.2016.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark ME, Batty JD, van Buuren CB, Dew DW, Eamon MA (2006) Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy 83:3–9

    Article  CAS  Google Scholar 

  • Costa JHDJAV (2017) Synechococcus nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes. Bioresour Technol 241:21–24

    Article  PubMed  CAS  Google Scholar 

  • Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: a review. Bioresour Technol 102:7381–7387

    Article  CAS  PubMed  Google Scholar 

  • Demirbaş A, Balat M (2004) Coal desulfurization via different methods. Energy Source 26:541–550

    Article  CAS  Google Scholar 

  • Deska M, Głodniok M, Ulfig K (2018) Coal enrichment methods by using microorganisms and their metabolites. J Ecol Eng 19(2):213–220

    Article  Google Scholar 

  • Dickson DP (1999) Nanostructured magnetism in living systems. J Magn Magn Mater 203:46–49

    Article  CAS  Google Scholar 

  • Du L, Lukefahr E, Naranjo A (2013) Texas Department of Transportation fly ash database and the development of chemical composition–based fly ash alkali-silica reaction durability index. J Mater Civ Eng 25:70–77

    Article  CAS  Google Scholar 

  • Dwivedi A, Jain MK (2014) Fly ash-waste management and overview: a review. Recent Res Sci Technol 6(1):30–35

    Google Scholar 

  • Ertit Taştan B (2017) Clean up fly ash from coal burning plants by new isolated fungi Fusarium oxysporum and Penicillium glabrum. J Environ Manage 200:46–52. https://doi.org/10.1016/j.jenvman.2017.05.062

    Article  CAS  PubMed  Google Scholar 

  • Erüst C, Akcil A, Gahan C, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88:2115–2132. https://doi.org/10.1002/jctb.4164

    Article  CAS  Google Scholar 

  • Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP (2016) A greener approach for resource recycling: manganese bioleaching. Chemosphere 154:628–639

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves C d S, Bernardin AM, Boca Santa RAA, Leoni C, Martins GJM, Kniess CT, Riella HG (2018) Production of vitreous materials from mineral coal bottom ash to minimize the pollution resulting from the waste generated by the thermoelectrical industry. Boletín la Soc Española Cerámica y Vidr 57:142–150

    Article  CAS  Google Scholar 

  • Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590

    Article  CAS  PubMed  Google Scholar 

  • Hoque ME, Philip OJ (2011) Biotechnological recovery of heavy metals from secondary sources—an overview. Mater Sci Eng C 31:57–66

    Article  CAS  Google Scholar 

  • Jain N, Sharma D (2004) Biohydrometallurgy for nonsulfidic minerals—a review. Geomicrobiol J 21:135–144. https://doi.org/10.1080/01490450490275271

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jekic J, Beskoski V, Gojgic-Cvijovic G, Grbavcic M, Vrvic M (2007) Bacterially generated Fe2(SO4)3 from pyrite, as a leaching agent for heavy metals from lignite ash. J Serb Chem Soc 72:615–619

    Article  CAS  Google Scholar 

  • Jerez CA (2017a) Metal extraction and biomining. In: Reference module in life sciences. Elsevier, Amsterdam, pp 1–14. https://doi.org/10.1016/b978-0-12-809,633-8.13077-8

    Chapter  Google Scholar 

  • Jerez CA (2017b) Bioleaching and biomining for the industrial recovery of metals. In: Reference module in life sciences. Elsevier, Amsterdam, pp 1–14. ISBN: 978-0-12-809633-8. https://doi.org/10.1016/B978-0-12-809633-8.09185-8

    Chapter  Google Scholar 

  • Johnson DB (2006) Biohydrometallurgy and the environment: Intimate and important interplay. Hydrometallurgy 83:153–166

    Article  CAS  Google Scholar 

  • Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Johnson D (2018) The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors. Minerals 8:343

    Article  CAS  Google Scholar 

  • Johnson DB, du Plessis CA (2015) Biomining in reverse gear: using bacteria to extract metals from oxidised ores. Miner Eng 75:2–5

    Article  CAS  Google Scholar 

  • Kazi TG, Lashari AA, Ali J, Baig JA, Afridi HI (2019) Volatilization of toxic elements from coal samples of Thar coal field, after burning at different temperature and their mobility from ash: risk assessment. Chemosphere 217:35–41

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Uddin I, Moeez S, Ahmad A (2014) Fungus-mediated preferential bioleaching of waste material such as fly - ash as a means of producing extracellular, protein capped, fluorescent and water soluble silica nanoparticles. PLoS One 9:e107597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leiva C, Arenas C, Vilches LF, Arroyo F, Luna-Galiano Y, Villegas R, Fernández-Pereira C (2018) Use of zeolitized coal fly ash as main component in panels with high fire resistance. ACI Mater J 115(3):393–399. https://doi.org/10.14359/51702009

    Article  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL Jr, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lyddy R (2009) Nanotechnology. In: Information resources in toxicology, 4th edn. Elsevier, Amsterdam, pp 321–328. https://doi.org/10.1016/b978-0-12-373,593-5.00036-7

    Chapter  Google Scholar 

  • Maass D, de Medeiros Machado M, Rovaris B, Bernardin A, de Oliveira D, Hotza D (2019a) Biomining of iron-containing nanoparticles from coal tailings. Appl Microbiol Biotechnol 103:7231–7240. https://doi.org/10.1007/s00253-019-10,001-2

    Article  CAS  PubMed  Google Scholar 

  • Maass D, Valério A, Lourenço L, de Oliveira D, Hotza D (2019b) Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. Hydrometallurgy 184:199–205. https://doi.org/10.1016/j.hydromet.2019.01.010

    Article  CAS  Google Scholar 

  • Mahmoud A, Cézac P, Hoadley AFA, Contamine F, D’Hugues P (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeter Biodegr 119:118–146

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Mashau A, Gitari M, Akinyemi S (2018) Evaluation of the bioavailability and translocation of selected heavy metals by Brassica juncea and Spinacea oleracea L for a South African power utility coal fly ash. Int J Environ Res Public Health 15:2841

    Article  CAS  PubMed Central  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Natarajan KA (2018) Biotechnology of metals. Principles, recovery methods and environmental concerns. Elsevier, Amsterdam

    Google Scholar 

  • Pangayao DC, Van Hullebusch ED, Gallardo SM, Bacani F (2015) Bioleaching of trace metals from coal ash using mixed culture of Acidithiobacillus albertensis and Acidithiobacillus Thiooxidans. J Eng Sci Technol 10:36–45

    Google Scholar 

  • Park JS, Taniguchi S, Park YJ (2009) Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 74:320–324

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles 2014:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (ed) (2017) Fungal nanotechnology, fungal biology. Springer, Cham

    Google Scholar 

  • Prasad R (2019a) Microbial nanobionics: basic research and applications. Springer, Berlin. ISBN 978-3-030-16534-5. https://www.springer.com/gp/book/9783030165338

    Book  Google Scholar 

  • Prasad R (2019b) Microbial nanobionics: state of art. Springer, Berlin. ISBN 978-3-030-16383-9. https://www.springer.com/gp/book/9783030163822

    Book  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer, Berlin. ISBN 978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer, Singapore. ISBN 978-981-10-8666-3. https://www.springer.com/gb/book/9789811086656

    Book  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohwerder MT (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Santhiya D, Ting Y-P (2006) Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J Biotechnol 121:62–74

    Article  CAS  PubMed  Google Scholar 

  • Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47. https://doi.org/10.1007/10_2013_216

  • Seidel A, Zimmels Y, Armon R (2001) Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem Eng J 83:123–130

    Article  CAS  Google Scholar 

  • Sinclair L, Thompson J (2015) In situ leaching of copper: challenges and future prospects. Hydrometallurgy 157:306–324

    Article  CAS  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini Rev Med Chem 21:245–265. https://doi.org/10.2174/1389557520999201116163012

  • Steinmann ZJN, Hauck M, Karuppiah R, Laurenzi IJ, Huijbregts MAJ (2014) A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-fueled power generation in the USA. Int J Life Cycle Assess 19:1146–1155

    Article  CAS  Google Scholar 

  • Temple KL, Le Roux NW (1964) Syngenesis of sulfide ores; desorption of adsorbed metal ions and their precipitation as sulfides. Econ Geol 59:647–655

    Article  CAS  Google Scholar 

  • Temuujin J, Surenjav E, Ruescher CH, Vahlbruch J (2019) Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 216:866–882

    Article  CAS  PubMed  Google Scholar 

  • Tennakoon C, Sagoe-Crentsil K, San Nicolas R, Sanjayan JG (2015) Characteristics of Australian brown coal fly ash blended geopolymers. Construct Build Mater 101:396–409

    Article  Google Scholar 

  • Tributsch H, Rojas-Chapana J (2007) Bacterial strategies for obtaining chemical energy by degrading sulfide minerals. In: Biomining. Springer, Berlin, pp 263–280

    Chapter  Google Scholar 

  • Valério A, Conti D, Araújo P, Sayer C, Rocha S (2015) Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf B Biointerfaces 135:35–41. https://doi.org/10.1016/j.colsurfb.2015.07.044

    Article  CAS  PubMed  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Mu D, Mu D (2014) An LCA study of an electricity coal supply chain. J Ind Eng Manag 10:311–335

    Google Scholar 

  • Xie Y, Xie S, Chen X, Gui W, Yang C, Caccetta L (2015) An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy. Hydrometallurgy 151:62–72

    Article  CAS  Google Scholar 

  • Xu T-J, Ting Y-P (2009) Fungal bioleaching of incineration fly ash: metal extraction and modeling growth kinetics. Enzyme Microb Technol 44:323–328

    Article  CAS  Google Scholar 

  • Xu T-J, Ramanathan T, Ting Y-P (2014) Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol Rep 3:8–14

    Article  Google Scholar 

  • Yang H, Liu Q, Chen G, Tong L, Ali A (2018) Bio-dissolution of pyrite by Phanerochaete chrysosporium. Trans Nonferrous Met Soc Chin 28:766–774

    Article  CAS  Google Scholar 

  • Yeheyis MB, Shang JQ, Yanful EK (2009) Long-term evaluation of coal fly ash and mine tailings co-placement: a site-specific study. J Environ Manage 91:237–244

    Article  PubMed  Google Scholar 

  • Yousuf B, Sanadhya P, Keshri J, Jha B (2012) Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 12:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Ji J, Wang S, Xu C, Yang K, Xu M (2018) Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere 206:278–284

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachamir Hotza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valério, A., Maass, D., de Andrade, C.J., de Oliveira, D., Hotza, D. (2021). Bioleaching from Coal Wastes and Tailings: A Sustainable Biomining Alternative. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Bio-valorization of Waste. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9696-4_9

Download citation

Publish with us

Policies and ethics