Skip to main content

Performance Enhancements of Solar Dryers Using Integrated Thermal Energy Storage: A Review

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering (ICRAME 2020)

Abstract

Solar energy is renewable sources of energy and more convenient to use it for heating purposes. Drying of food grains increases the shelf life and to preserve the excess food products in a season toward food security. Direct sun-drying is typically involving a slow process. Further, the quality of air at the site influences the quality of the dried products. Drying is not only applied to food grains, but also several industrial applications are using solar air heaters. This work mainly focused on effect of employing phase change materials (PCM) in dryer. The solar dryer produces hot air through natural or forced convection. The drying time is reduced by up to 60% with the help of PCM. The air velocity is to be around 1 m/s to provide uniform heat output from the PCM. The overall heat retention inside the dryer was found maximum when integrating PCM in the solar dryer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandali, M., Boubekri, A., Mennouche, D.: Improvement of the thermal performance of solar drying systems using different techniques: a review. J. Sol. Energy Eng. Trans. ASME 141(5), 050802 (2019). https://doi.org/10.1115/1.4043613

    Article  Google Scholar 

  2. Fudholi, A., Sopian, K.: A review of solar air flat plate collector for drying application. Renew. Sustain. Energy Rev. 102, 333–345 (2019). https://doi.org/10.1016/j.rser.2018.12.032

    Article  Google Scholar 

  3. Mofijur, M., Mahlia, T.M.I., Silitonga, A.S., Ong, H.C., Silakhori, M., Hasan, M.H., et al.: Phase change materials (PCM) for solar energy usages and storage: an overview. Energies 12(16), 3167 (2019). https://doi.org/10.3390/en12163167

    Article  Google Scholar 

  4. Sreerag, T.S., Jithish, K.S.: Experimental investigations of a solar dryer with and without multiple phase change materials (PCM’s). World J. Eng. 13(3), 210–217 (2016)

    Article  Google Scholar 

  5. Agarwal, A., Sarviya, R.M.: An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material. Eng. Sci. Technol. Int. J. 19(1), 619–631 (2016). https://doi.org/10.1108/WJE-06-2016-028

    Article  Google Scholar 

  6. Agrawal, A., Sarviya, R.M.: A review of research and development work on solar dryers with heat storage. Int. J. Sustain. Energy 35(6), 583–605 (2016). https://doi.org/10.1080/14786451.2014.930464

    Article  Google Scholar 

  7. Vásquez, J., Reyes, A., Mahn, A., Cubillos, F.: Experimental evaluation of fuzzy control solar drying with thermal energy storage system. Dry Technol. 34(13), 1558–1566 (2016). https://doi.org/10.1080/07373937.2015.1137001

    Article  Google Scholar 

  8. Jain, A., Kumar, A., Shukla, A., Sharma, A.: Development of phase change materials (PCMs) for solar drying systems. In: Prakash, O., Kumar, A. (eds.) Solar Drying Technology. Green Energy and Technology, pp. 619–633 (2017). https://doi.org/10.1007/978-981-10-3833-4_23

  9. Agrawal, A., Sarviya, R.M.: Characterization of commercial grade paraffin wax as latent heat storage material for solar dryers. Mater. Today Proc. 4(2), 779–789 (2017). https://doi.org/10.1016/j.matpr.2017.01.086

    Article  Google Scholar 

  10. Krishnan, S., Sivaraman, B.: Experimental investigations on thermal storage in a solar dryer. Int. Energy J. 17(1), 23–35 (2017)

    Google Scholar 

  11. El Khadraoui, A., Bouadila, S., Kooli, S., Farhat, A., Guizani, A.: Thermal behavior of indirect solar dryer: nocturnal usage of solar air collector with PCM. J. Clean Prod. 148, 37–48 (2017). https://doi.org/10.1016/j.jclepro.2017.01.149

    Article  Google Scholar 

  12. El-Sebaii, A.A., Shalaby, S.M.: Experimental investigation of drying thymus cut leaves in indirect solar dryer with phase change material. J. Sol Energy Eng. Trans. ASME 139(6) (2017). https://doi.org/10.1115/1.4037816

  13. Aumporn, O., Zeghmati, B., Chesneau, X., Janjai, S.: Numerical study of a solar greenhouse dryer with a phase-change material as an energy storage medium. Heat Transf. Res. 49(6), 509–528 (2018). https://doi.org/10.1615/HeatTransRes.2018020132

    Article  Google Scholar 

  14. Kaewpanha, M., Wansungnern, W., Banthuek, S.: Development of thermal energy storage as a supplemental heat source for solar dryer. Key Eng. Mater. 777, 102–106 (2018). https://doi.org/10.4028/www.scientific.net/KEM.777.102

    Article  Google Scholar 

  15. Yadav, S., Chandramohan, V.P.: Numerical analysis on thermal energy storage device with finned copper tube for an indirect type solar drying system. J. Sol. Energy Eng. Trans. ASME 140(3) (2018). https://doi.org/10.1115/1.4039273

  16. Swami, V.M., Arun, T.A., Anil, T.R.: Experimental analysis of solar fish dryer using phase change material. J. Energy Storage 20, 310–315 (2018). https://doi.org/10.1016/j.est.2018.09.016

    Article  Google Scholar 

  17. Yadav, S., Lingayat, A.B., Chandramohan, V.P., Raju, V.R.K.: Numerical analysis on thermal energy storage device to improve the drying time of indirect type solar dryer. Heat Mass Transf. 54(12), 3631–3646 (2018). https://doi.org/10.1007/s00231-018-2390-7

    Article  Google Scholar 

  18. Bhardwaj, A.K., Kumar, R., Chauhan, R.: Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Sol. Energy 177, 395–407 (2019). https://doi.org/10.1016/j.solener.2018.11.007

    Article  Google Scholar 

  19. Elbahjaoui, R., El Qarnia, H.: Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. Int. J. Hydrogen Energy 44(3), 2013–2028 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.116

    Article  Google Scholar 

  20. Reyes, A., Vásquez, J., Pailahueque, N., Mahn, A.: Effect of drying using solar energy and phase change material on kiwifruit properties. Dry Technol. 37(2), 232–244 (2019). https://doi.org/10.1080/07373937.2018.1450268

    Article  Google Scholar 

  21. Vásquez, J., Reyes, A., Pailahueque, N.: Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system. Renew. Energy 139, 1375–1390 (2019). https://doi.org/10.1016/j.renene.2019.02.085

    Article  Google Scholar 

  22. Babar, O.A., Arora, V.K., Nema, P.K.: Selection of phase change material for solar thermal storage application: a comparative study. J. Braz. Soc. Mech. Sci. Eng. 41(9) (2019). https://doi.org/10.1007/s40430-019-1853-1

  23. Iranmanesh, M., Samimi Akhijahani, H., Barghi Jahromi, M.S.: CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renew. Energy 145, 1192–1213 (2020). https://doi.org/10.1016/j.renene.2019.06.038

    Article  Google Scholar 

  24. Azaizia, Z., Kooli, S., Hamdi, I., Elkhal, W., Guizani, A.A.: Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renew. Energy 145, 1972–1984 (2020). https://doi.org/10.1016/j.renene.2019.07.055

    Article  Google Scholar 

  25. Babu, S., Abishraj, V.R., Suthagar, S.: Solar thermal energy storage on PCM based integrated saw tooth collector for institutions. In: 1st International Conference on Sustainable Green Buildings and Communities, SGBC 2016, 7936078 (2017)

    Google Scholar 

  26. Srivastava, A.K., Shukla, S.K.: Thermal modeling of indirect solar drying system: an experimental validation. Distrib. Gener. Altern. Energy J. 32(3), 19–51 (2017). https://doi.org/10.1080/21563306.2017.11878944

    Article  Google Scholar 

  27. Gao, W.F., Lin, W.X., Liu, T., Li, M.: An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors. IOP Conf. Ser. Earth Environ. Sci. 93(1), 012075 (2017). https://doi.org/10.1088/1755-1315/93/1/012075

    Article  Google Scholar 

  28. Bhagwat, V.V., Salve, S.P., Debnath, S.: Experimental analysis of a solar dehydration with phase changing material. AIP Conf. Proc. 1998, 020003 (2018). https://doi.org/10.1063/1.5049099

    Article  Google Scholar 

  29. Atalay, H.: Assessment of energy and cost analysis of packed bed and phase change material thermal energy storage systems for the solar energy-assisted drying process. Sol. Energy 198, 124–138 (2020). https://doi.org/10.1016/j.solener.2020.01.051

    Article  Google Scholar 

  30. Senthil, R.: Effect of uniform and variable fin height on charging and discharging of phase change material in a horizontal cylindrical thermal storage. Therm. Sci. 23(3B), 1981–1988 (2019). https://doi.org/10.2298/TSCI170709239S

    Article  Google Scholar 

  31. Senthil, R.: Effect of position of heat transfer fluid tube on the melting of phase change material in cylindrical thermal energy storage. Energy Sources Part A (2019). https://doi.org/10.1080/15567036.2019.1649751

  32. Senthil, R., Cheralathan, M.: Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials. J. Energy Storage 25, 100841 (2019). https://doi.org/10.1016/j.est.2019.100841

    Article  Google Scholar 

  33. Senthil, R.: Effect of charging of phase change material in vertical and horizontal rectangular enclosures in a concentrated solar receiver. Case Stud. Therm. Eng. 21, 100653 (2020). https://doi.org/10.1016/j.csite.2020.100653

    Article  Google Scholar 

  34. Bahammou, Y., Lamsyehe, H., Kouhila, M., Lamharrar, A., Idlimam, A., Abdenouri, N.: Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying. Renew. Energy 142, 110–122 (2019). https://doi.org/10.1016/j.renene.2019.04.012

    Article  Google Scholar 

  35. Alimohammadi, Z., Akhijahani, H.S., Salami, P.: Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Sol. Energy 201, 157–177 (2020). https://doi.org/10.1016/j.solener.2020.02.079

    Article  Google Scholar 

  36. Khouya, A.: Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln. Renew. Energy 155, 783–799 (2020). https://doi.org/10.1016/j.renene.2020.03.178

    Article  Google Scholar 

  37. Lamrani, B., Draoui, A.: Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: a case study of solar thermal applications. Drying Technol. (2020). https://doi.org/10.1080/07373937.2020.1750025

    Article  Google Scholar 

  38. Bahari, M., Najafi, B., Aziz Babapoor, A.: Evaluation of α-Al2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer. J. Energy Storage 28, 101181 (2020). https://doi.org/10.1016/j.est.2019.101181

    Article  Google Scholar 

  39. Ndukwu, M.C., Onyenwigwe, D., Abam, F.I., Eke, A.B., Dirioha, C.: Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage. Renew. Energy 154, 553–568 (2020). https://doi.org/10.1016/j.renene.2020.03.016

    Article  Google Scholar 

  40. Poblete, R., Painemal, O.: Improvement of the solar drying process of sludge using thermal storage. J. Environ. Manage. 255, 109883 (2020). https://doi.org/10.1016/j.jenvman.2019.109883

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Senthil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senthil, R., Vijayan, G., Phadtare, G., Gupta, B. (2021). Performance Enhancements of Solar Dryers Using Integrated Thermal Energy Storage: A Review. In: Kumar, A., Pal, A., Kachhwaha, S.S., Jain, P.K. (eds) Recent Advances in Mechanical Engineering . ICRAME 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9678-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9678-0_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9677-3

  • Online ISBN: 978-981-15-9678-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics