Skip to main content

Nanothermometry for Deep Tissues by Using Near-Infrared Fluorophores

  • Chapter
  • First Online:
Transparency in Biology

Abstract

Temperature is a fundamental quantity that can regulate various biological phenomena and thus important in clinical biology as well as sport and health sciences. This chapter reviews how the body temperature is regulated in the organisms (mainly in mammals including humans), and how the body temperature of not only the surface but also the deep tissues. As an emerging technique, the luminescence nanothermometry that works in the over-thousand-nanometer (OTN) near-infrared (NIR) wavelength range, which allows us to look the biological tissues transparently, is being developed to visualize and reveal the mechanisms of dynamic time-dependent changes in body temperature distribution in deep tissues. The data and knowledge collected with the new techniques will provide insights into body temperature control in biology and its management in biomedical and engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.D. Brock, H. Freeze, Thermus aquaticus gen. g. and sp. n., a nonsporulating extreme thermophile. J. Bact. 98, 289 (1969)

    Google Scholar 

  2. A. Chien, D.B. Edgar, J.M. Trela, Deoxyribonucleic acid polymerase from the extreme thermophile thermus aquaticus. J. Bact. 127, 1550 (1976)

    Article  CAS  Google Scholar 

  3. K.S. Lundberg, D.D. Shoemaker, M.W. Adams et al., High-fidelity amplification using a thermostable DNA polymerase isolated from pyrococcus furiosus. Gene 108, 1 (1991). https://doi.org/10.1016/0378-1119(91)90480-y

    Article  CAS  PubMed  Google Scholar 

  4. R.K. Saiki, S. Scharf, F. Faloona et al., Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350 (1985). https://doi.org/10.1126/science.2999980

    Article  CAS  PubMed  Google Scholar 

  5. R.K. Saiki, D.H. Gelfand, S. Stoffel et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487 (1988). https://doi.org/10.1126/science.239.4839.487

    Article  CAS  PubMed  Google Scholar 

  6. T.W. Schulte, M.V. Blagosklonny, C. Ingui et al., Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 270, 24585 (1995). https://doi.org/10.1074/jbc.270.41.24585

    Article  CAS  PubMed  Google Scholar 

  7. D.S. Cissel, M.A. Beaven, Disruption of Raf-1/heat shock protein 90 complex and Raf signaling by Dexamethasone in mast cells. J. Biol. Chem. 275, 7066 (2000). https://doi.org/10.1074/jbc.275.10.7066

    Article  CAS  PubMed  Google Scholar 

  8. N. Gomez, T. Erazo, J.M. Lizcano, ERK5 and cell proliferation: nuclear localization is what matters. Front. Cell Dev. Biol. 4, 105 (2016). https://doi.org/10.3389/fcell.2016.00105

    Article  PubMed  PubMed Central  Google Scholar 

  9. I.M. Verma, J.K. Stevenson, E.M. Schwarz et al., Rel/NF-kappa B/I Kappa B family: intimate tales of association and dissociation. Genes Dev. 9, 2723 (1995). https://doi.org/10.1101/gad.9.22.2723

    Article  CAS  PubMed  Google Scholar 

  10. V. Krajka-Kuźniak, J. Paluszczak, W. Baer-Dubowska, The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep. 69, 393 (2017). https://doi.org/10.1016/j.pharep.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  11. T. Shimizu, A. Lengalova, V. Martínek et al., Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem. Soc. Rev. 48, 5624 (2019). https://doi.org/10.1039/c9cs00268e

    Article  CAS  PubMed  Google Scholar 

  12. M.L. Begasse, M. Leaver, F. Vazquez, et al., Temperature Dependence of cell division timing accounts for a shift in the thermal limits of C. Elegans and C. Briggsae. Cell Rep. 10, 647 (2015). https://doi.org/10.1016/j.celrep.2015.01.006

  13. D. Patel, K.A. Franklin, Temperature-regulation of plant architecture. Plant Signal Behav. 4, 577 (2009). https://doi.org/10.4161/psb.4.7.8849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D.A. Warner, R. Shine, The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451, 566 (2008). https://doi.org/10.1038/nature06519

    Article  CAS  PubMed  Google Scholar 

  15. A. Bahat, I. Tur-Kaspa, A. Gakamsky et al., Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9, 149 (2003). https://doi.org/10.1038/nm0203-149

    Article  CAS  PubMed  Google Scholar 

  16. K. Okabe, N. Inada, C. Gota et al., Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012). https://doi.org/10.1038/ncomms1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P.A. Mackowiak, S.S. Wasserman, M.M. Levine, A Critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA 268, 1578 (1992). https://doi.org/10.1001/jama.1992.03490120092034

  18. G.S. Kelly, Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern. Med. Rev. 11, 278 (2006)

    PubMed  Google Scholar 

  19. G.S. Kelly, Body temperature variability (Part 2): masking influences of body temperature variability and a review of body temperature variability in disease. Altern. Med. Rev. 12, 49 (2007)

    PubMed  Google Scholar 

  20. K. Kanosue, L.I. Crawshaw, K. Nagashima et al., Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. Eur. J. Appl. Physiol. 109, 5 (2010). https://doi.org/10.1007/s00421-009-1256-6

    Article  PubMed  Google Scholar 

  21. S. Kobayashi, Temperature-sensitive neurons in the hypothalamus: a new hypothesis that they act as thermostats, not as transducers. Prog. Neurobiol. 32, 103 (1989). https://doi.org/10.1016/0301-0082(89)90012-9

  22. J.A. Boulant, Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31(Suppl 5), S157 (2000). https://doi.org/10.1086/317521

    Article  PubMed  Google Scholar 

  23. G. Mory, F. Bouillaud, M. Combes-George et al., Noradrenaline controls the concentration of the uncoupling protein in brown adipose tissue. FEBS Lett. 166, 393 (1984). https://doi.org/10.1016/0014-5793(84)80120-9

    Article  CAS  PubMed  Google Scholar 

  24. Z.B. Andrews, S. Diano, T.L. Horvath, Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 6, 829 (2005). https://doi.org/10.1038/nrn1767

  25. M.J. Gaudry, M. Jastroch, Molecular evolution of uncoupling proteins and implications for brain function. Neurosci. Lett. 696, 140 (2019). https://doi.org/10.1016/j.neulet.2018.12.027

    Article  CAS  PubMed  Google Scholar 

  26. R.S. Seymour, Biophysics and physiology of temperature regulation in thermogenic flowers. Biosci. Rep. 21, 223 (2001). https://doi.org/10.1023/A:1013608627084

    Article  CAS  PubMed  Google Scholar 

  27. A. Tissières, H.K. Mitchell, U.M. Tracy, Protein synthesis in salivary glands of drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389 (1974). https://doi.org/10.1016/0022-2836(74)90447-1

    Article  PubMed  Google Scholar 

  28. M.J. Caterina, M.A. Schumacher, M. Tominaga et al., The Capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816 (1997). https://doi.org/10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  29. R. Inoue, T. Hanano, J. Shi et al., Transient receptor potential protein as a novel non-voltage-gated Ca2+ entry channel involved in diverse pathophysiological functions. J. Pharmacol. Sci. 91, 271 (2003). https://doi.org/10.1254/jphs.91.271

    Article  CAS  PubMed  Google Scholar 

  30. G.M. Story, The emerging role of TRP channels in mechanisms of temperature and pain sensation. Curr. Neuropharmacol. 4, 183 (2006). https://doi.org/10.2174/157015906778019482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Uchida, K. Dezaki, T. Yoneshiro et al., Involvement of thermosensitive TRP channels in energy metabolism. J. Physiol. Sci. 67, 549 (2017). https://doi.org/10.1007/s12576-017-0552-x

    Article  CAS  PubMed  Google Scholar 

  32. D.J. Cosens, A. Manning, Abnormal electroretinogram from a drosophila mutant. Nature 224, 285 (1969). https://doi.org/10.1038/224285a0

    Article  CAS  PubMed  Google Scholar 

  33. T. Sugiura, M. Tominaga, H. Katsuya et al., Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol. 88, 544 (2002). https://doi.org/10.1152/jn.2002.88.1.544

    Article  CAS  PubMed  Google Scholar 

  34. N.R. Gavva, A.W. Bannon, S. Surapaneni et al., The vanilloid receptor TRPV1 Is tonically activated in vivo and involved in body temperature regulation. J. Neurosci. 27, 3366 (2007). https://doi.org/10.1523/JNEUROSCI.4833-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Sharif-Naeini, S. Ciura, C.W. Bourque, TRPV1 gene required for thermosensory transduction and anticipatory secretion from vasopressin neurons during hyperthermia. Neuron 58, 179 (2008). https://doi.org/10.1016/j.neuron.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  36. A.D. Güler, H. Lee, T. Iida, Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408 (2002). https://doi.org/10.1523/JNEUROSCI.22-15-06408.2002

    Article  PubMed  PubMed Central  Google Scholar 

  37. H. Lee, T. Iida, A. Mizuno et al., Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci. 25, 1304 (2005). https://doi.org/10.1523/JNEUROSCI.4745.04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A.S.M. El-Radhi, Why is the evidence not affecting the practice of fever management? Arch. Dis. Child. 93, 918 (2008). https://doi.org/10.1136/adc.2008.139949

    Article  PubMed  Google Scholar 

  39. M. Richardson, E. Purssell, Who’s afraid of fever? Arch. Dis. Child. 100, 818 (2015). https://doi.org/10.1136/archdischild-2014-307483

    Article  PubMed  Google Scholar 

  40. E.A. Dennis, Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269, 13057 (1994)

    CAS  PubMed  Google Scholar 

  41. C.C. Leslie, Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 16709 (1997). https://doi.org/10.1074/jbc.272.27.16709

    Article  CAS  PubMed  Google Scholar 

  42. K. Matsumura, C. Cao, M. Ozaki et al., Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J. Neurosci. 18, 6279 (1998). https://doi.org/10.1523/JNEUROSCI.18-16-06279.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. H.E. de Vries. K.H. Hoogendoorn, J.van Dijk, et al., Eicosanoid production by rat cerebral endothelial cells: Stimulation by lipopolysaccharide, interleukin-1 and interleukin-6. J. Neuroimmunol. 59, 1 (1995). https://doi.org/10.1016/0165-5728(95)00009-q

  44. R. Hanada, A. Leibbrandt, T. Hanada et al., Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505 (2009). https://doi.org/10.1038/nature08596

    Article  CAS  PubMed  Google Scholar 

  45. F. Ushikubi, E. Segi, Y. Sugimoto et al., Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395, 281 (1998). https://doi.org/10.1038/26233

    Article  CAS  PubMed  Google Scholar 

  46. K. Nakamura, K. Matsumura, T. Kaneko et al., The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 22, 4600 (2002). https://doi.org/10.1523/JNEUROSCI.22-11-04600.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Lazarus, K. Yoshida, R. Coppari et al., EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10, 1131 (2007). https://doi.org/10.1038/nn1949

    Article  CAS  PubMed  Google Scholar 

  48. S. Conolly, J.E. Arrowsmith, A.A. Klein, Deep hypothermic circulatory arrest. Continuing Educ Anaesth Crit Care Pain 10, 138 (2010). https://doi.org/10.1093/bjaceaccp/mkq024

    Article  Google Scholar 

  49. M. Saxena, P.J.D. Andrews, A. Cheng, et al., Modest cooling therapies (35 to 37.5 ºC) for traumatic brain injury. Cochrane Database Syst. Rev. 2014, CD006811 (2014). https://doi.org/10.1002/14651858.CD006811.pub3

  50. S.R. Lewis, D.J. Evans, A.R. Butler, et al., Hypothermia for Traumatic Brain Injury. Cochrane Database Syst. Rev. 2017 CD001048, (2017). https://doi.org/10.1002/14651858.CD001048.pub5

  51. S.E. Jacobs, M. Berg, R. Hunt, et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, CD003311 (2013). https://doi.org/10.1002/14651858.CD003311.pub3

  52. A. Ascensão, M. Leite, A.N. Rebelo et al., Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J. Sports Sci. 29, 217 (2011). https://doi.org/10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  53. T.A.H. Järvinen, T.L.N. Järvinen, M. Kääriäinen et al., Muscle Injuries: optimising recovery. Best Pract. Res. Clin. Rheumatil. 21, 317 (2007). https://doi.org/10.1016/j.berh.2006.12.004

    Article  Google Scholar 

  54. L.A. Roberts, T. Raastad, J.F. Markworth et al., Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J. Physiol. 593, 4285 (2015). https://doi.org/10.1113/JP270570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. L. Guan, G. Xu, Damage effect of high-intensity focused ultrasound on breast cancer tissues and their vascularities. World J. Surg. Oncol. 14, 153 (2016). https://doi.org/10.1186/s12957-016-0908-3

    Article  PubMed  PubMed Central  Google Scholar 

  56. J.Y. Park, P. Choi, H.K. Kim et al., Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies. J. Ginseng Res. 40, 62 (2016). https://doi.org/10.1016/j.jgr.2015.04.007

    Article  PubMed  Google Scholar 

  57. G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171 (2013). https://doi.org/10.1002/lpor.201200003

    Article  CAS  Google Scholar 

  58. I. Krylov, R. Akasov, V. Rocheva et al., Local overheating of biotissue labeled with upconversion nanoparticles under Yb3+ resonance excitation. Front. Phys. 8, 295 (2020). https://doi.org/10.3389/fchem.2020.00295

    Article  CAS  Google Scholar 

  59. L. Ding, F. Ren, Z. Liu et al., Size-dependent photothermal conversion and photoluminescence of theranostic NaNdF4 nanoparticles under excitation of different-wavelength lasers. Bioconjugate Chem. 31, 340 (2020). https://doi.org/10.1021/acs.bioconjchem.9b00700

    Article  CAS  Google Scholar 

  60. E. Carrasco, B. del Rosal, F. Sanz-Rodríguez et al., Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25, 615 (2015). https://doi.org/10.1002/adfm.201403653

    Article  CAS  Google Scholar 

  61. J.T. Robinson, K. Welsher, S.M. Tabakman et al., High performance in vivo Near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 3, 779 (2010). https://doi.org/10.1007/s12274-010-0045-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. A.L. Antaris, J.T. Robinson, O.K. Yaghi et al., Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 7, 3644 (2013). https://doi.org/10.1021/nn4006472

    Article  CAS  PubMed  Google Scholar 

  63. C. Liang, S. Diao, C. Wang et al., Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 26, 5646 (2014). https://doi.org/10.1002/adma.201401825

    Article  CAS  PubMed  Google Scholar 

  64. M. Sund-Levander, C. Forsberg, L.K. Wahren, Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand. J. Caring Sci. 16, 122 (2002). https://doi.org/10.1046/j.1471-6712.2002.00069.x

    Article  PubMed  Google Scholar 

  65. I. Sage, Thermochromic liquid crystals. Liq. Cryst. 38, 1551 (2011). https://doi.org/10.1080/02678292.2011.631302

    Article  CAS  Google Scholar 

  66. P. Kiekkas, N. Stefanopoulos, N. Bakalis et al., Agreement of infrared temporal artery thermometry with other thermometry methods in adults: systematic review. J. Clin. Nurs. 25, 894 (2016). https://doi.org/10.1111/jocn.13117

    Article  PubMed  Google Scholar 

  67. C. Zhen, Z. Xia, L. Long et al., Accuracy of infrared ear thermometry in children: a meta-analysis and systematic review. Clin. Pediatr. (Phila) 53, 1158 (2014). https://doi.org/10.1177/0009922814536774

    Article  Google Scholar 

  68. J.P. Feist, A.L. Heyes, Europium-doped yttria-stabilized zirconia for high-temperature phosphor thermometry. Proc. Inst. Mechanic. Eng. 214 Part L, 7 (2000). https://doi.org/10.1177/146442070021400102

  69. H. Zhou, M. Sharma, O. Berezin et al., Nanothermometry: from microscopy to thermal treatments. Chem. Phys. Chem. 17, 27 (2016). https://doi.org/10.1002/cphc.201500753

    Article  CAS  PubMed  Google Scholar 

  70. T. Bai, N. Gu, Micro/nanoscale thermometry for cellular thermal sensing. Small 12, 4590 (2016). https://doi.org/10.1002/smll.201600665

    Article  CAS  PubMed  Google Scholar 

  71. A.M. Stark, S. Way, The use of thermovision in the detection of early breast cancer. Cancer 33, 1664 (1974). https://doi.org/10.1002/1097-0142(197406)33:6%3c1664::AID-CNCR2820330629%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  72. D. Jaque, L.M. Maestro, B. del Rosal et al., Nanoparticles for photothermal therapies. Nanoscale 6, 9494 (2014). https://doi.org/10.1039/C4NR00708E

    Article  CAS  PubMed  Google Scholar 

  73. D. Jaque, F. Vetrone, Luminescence nanothermometry. Nanoscale 4, 4301 (2012). https://doi.org/10.1039/C2NR30764B

    Article  CAS  PubMed  Google Scholar 

  74. K. Nigoghossian, S. Ouellet, J. Plain et al., Upconversion nanoparticle-decorated gold nanoshells for near-infrared induced heating and thermometry. J. Mater. Chem. B 5, 7109 (2017). https://doi.org/10.1039/c7tb01621b

    Article  CAS  PubMed  Google Scholar 

  75. Y. Zhang, S. Xu, X. Li et al., Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+ @NaYF4:Tm3+/Yb3+ core-shell particles. Opt. Mater. Exp. 8, 368 (2018). https://doi.org/10.1364/OME.8.000368

    Article  CAS  Google Scholar 

  76. B. del Rosal, E. Ximendes, U. Rocha et al., In vivo luminescence nanothermometry: from materials to applications. Adv. Opt. Mater. 5, 1600508 (2017). https://doi.org/10.1002/adom.201600508

    Article  CAS  Google Scholar 

  77. E. Hemmer, P. Acosta-Mora, J. Méndez-Ramos et al., Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J. Mater. Chem. B 5, 4365 (2017). https://doi.org/10.1039/C7TB00403F

    Article  CAS  PubMed  Google Scholar 

  78. C.D.S. Brites, P.P. Lima, N.J.O. Silva et al., Thermometry at the nanoscale. Nanoscale 4, 4799 (2012). https://doi.org/10.1039/c2nr30663h

    Article  CAS  PubMed  Google Scholar 

  79. C.D.S. Brites, S. Balabhadra, L.D. Carlos, Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 7, 1801239 (2019). https://doi.org/10.1002/adom.201801239

    Article  CAS  Google Scholar 

  80. K. Okabe, R. Sakaguchi, B, Shi, et al., Intracellular thermometry with fluorescent sensors for thermal biology. Eur. J. Physiol. 470, 717 (2018). https://doi.org/10.1007/s00424-018-2113-4

  81. V.A. Vlaskin, N. Janssen, J. van Rijssel et al., Tunable Dual Emission in Doped Semiconductor Nanocrystals. Nano Lett. 10, 3670 (2010). https://doi.org/10.1021/nl102135k

    Article  CAS  PubMed  Google Scholar 

  82. N. Inada, N. Fukuda, T. Hayashi et al., Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Protoc. 14, 1293 (2019). https://doi.org/10.1038/s41596-019-0145-7

    Article  CAS  PubMed  Google Scholar 

  83. J.S. Donner, S.A. Thompson, M.A. Kreuzer et al., Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107 (2012). https://doi.org/10.1021/nl300389y

    Article  CAS  PubMed  Google Scholar 

  84. S. Kiyonaka, T. Kajimoto, R. Sakaguchim et al., Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 10, 1232 (2013). https://doi.org/10.1038/nmeth.2690

    Article  CAS  PubMed  Google Scholar 

  85. M. Nakano, Y. Arai, I. Kotera et al., Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. PLoS ONE 12, e0172344 (2017). https://doi.org/10.1371/journal.pone.0172344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. D. Chrétien, P. Bénit, H.H. Ha et al., Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol. 16, e2003992 (2018). https://doi.org/10.1371/journal.pbio.2003992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. M.C. Rajagopal, J.W. Brown, D. Gelda et al., Transient heat release during induced mitochondrial proton uncoupling. Commun. Biol. 2, 279 (2019). https://doi.org/10.1038/s42003-019-0535-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. E. Hemmer, N. Venkatachalam, H. Hyodo et al., Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 5, 11339 (2013). https://doi.org/10.1039/c3nr02286b

    Article  CAS  PubMed  Google Scholar 

  89. S. Arai, Ferdinandus, S. Takeoka, et al., Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors. Analyst 140, 7534 (2015). https://doi.org/10.1039/C5AN01287B

  90. J.S. Donner, S.A. Thompson, C. Alonso-Ortega et al., Imaging of plasmonic heating in a living organism. ACS Nano 7, 8666 (2013). https://doi.org/10.1021/nn403659n

    Article  CAS  PubMed  Google Scholar 

  91. L. Huo, J. Zhou, R. Wu et al., Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing. Opt. Mater. Exp. 6, 1056 (2016). https://doi.org/10.1364/OME.6.001056

    Article  CAS  Google Scholar 

  92. K. Soga, M. Kamimura, K. Okubo et al., Near-infrared biomedical imaging for transparency. J. Imag. Soc. Jpn 58, 602 (2019). https://doi.org/10.11370/isj.58.602

    Article  CAS  Google Scholar 

  93. F. Vetrone, R. Naccache, A. Zamarrón et al., Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254 (2010). https://doi.org/10.1021/nn100244a

    Article  CAS  PubMed  Google Scholar 

  94. M. Kamimura, T. Matsumoto, S. Suyari et al., Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF4 nanoparticles. J. Mater. Chem. B 5, 1917 (2017). https://doi.org/10.1039/C7TB00070G

    Article  CAS  PubMed  Google Scholar 

  95. L. Wortmann, S. Suyari, T. Ube et al., Tuning the thermal sensitivity of β-NaYF4: Yb3+, Ho3+, Er3+ nanothermometers for optimal temperature sensing in OTN-NIR (NIR II/III) biological window. J. Lumin. 198, 236 (2018). https://doi.org/10.1016/j.jlumin.2018.01.049

    Article  CAS  Google Scholar 

  96. S. Sekiyama, M. Umezawa, S. Kuraoka et al., Temperature sensing of deep abdominal region in mice by using over-1000 nm near-infrared luminescence of rare-earth-doped NaYF4 nanothermometer. Sci. Rep. 8, 16979 (2018). https://doi.org/10.1038/s41598-018-35354-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. E.C. Ximendes, A.F. Pereira, U. Rocha et al., Thulium doped LaF3 for nanothermometry operating over 1000 nm. Nanoscale 11, 8864 (2019). https://doi.org/10.1039/c9nr00082h

    Article  CAS  PubMed  Google Scholar 

  98. E.C. Ximendes, U. Rocha, T.O. Sales et al., In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater. 27, 1702249 (2017). https://doi.org/10.1002/adfm.201702249

    Article  CAS  Google Scholar 

  99. A. Skripka, A. Morinvil, M. Matulionyte et al., Advancing neodymium single-band nanothermometry. Nanoscale 11, 11322 (2019). https://doi.org/10.1039/c9nr02801c

    Article  CAS  PubMed  Google Scholar 

  100. E.C. Ximendes, W.Q. Santos, U. Rocha et al., Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 16, 1695 (2016). https://doi.org/10.1021/acs.nanolett.5b04611

    Article  CAS  PubMed  Google Scholar 

  101. F. Xu, Z. Ba, Y. Zheng et al., Rare-earth-doped optical nanothermometer in visible and near-infrared regions. J. Mater. Sci. 53, 15107 (2018). https://doi.org/10.1007/s10853-018-2702-9

    Article  CAS  Google Scholar 

  102. P. Cortelletti, A. Skripka, C. Facciotti et al., Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows. Nanoscale 10, 2568 (2018). https://doi.org/10.1039/c7nr06141b

    Article  CAS  PubMed  Google Scholar 

  103. A. Skripka, A. Benayas, R. Marin et al., Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing. Nanoscale 9, 3079 (2017). https://doi.org/10.1039/c6nr08472a

    Article  CAS  PubMed  Google Scholar 

  104. T. Chihara, M. Umezawa, K. Miyata et al., Biological deep temperature imaging with fluorescence lifetime of rare-earth-doped ceramics particles in the second NIR biological window. Sci. Rep. 9, 12806 (2019). https://doi.org/10.1038/s41598-019-49291-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. E. Thimsen, B. Sadtler, M.Y. Berezin, Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities. Nanophotonics 6, 1043 (2017). https://doi.org/10.1515/nanoph-2017-0039

    Article  CAS  Google Scholar 

  106. B. del Rosal, E. Carrasco, F. Ren et al., Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv. Funct. Mater. 26, 6060 (2016). https://doi.org/10.1002/adfm.201601953

    Article  CAS  Google Scholar 

  107. H.D.A. Santos, E.C. Ximendes, M. del C. Iglesias-de la Cruz, et al., In vivo early tumor detection and diagnosis by infrared luminescence transient nanothermometry. Adv. Funct. Mater. 28, 1803924 (2018). https://doi.org/10.1002/adfm.201803924

  108. B. del Rosal, D. Ruiz, I. Chaves-Coira et al., In vivo contactless brain nanothermometry. Adv. Funct. Mater. 28, 1806088 (2018). https://doi.org/10.1002/adfm.201806088

    Article  CAS  Google Scholar 

  109. E.N. Cerón, D.H. Ortgies, B. del Rosal et al., Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Mater. 27, 4781 (2015). https://doi.org/10.1002/adma.201501014

    Article  CAS  PubMed  Google Scholar 

  110. D. Ruiz, B. del Rosal, M. Acebrón et al., Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry. Adv. Funct. Mater. 27, 1604629 (2017). https://doi.org/10.1002/adfm.201604629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umezawa, M., Nigoghossian, K. (2021). Nanothermometry for Deep Tissues by Using Near-Infrared Fluorophores. In: Soga, K., Umezawa, M., Okubo, K. (eds) Transparency in Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9627-8_7

Download citation

Publish with us

Policies and ethics