Skip to main content

Platelets in Diagnostic

  • Chapter
  • First Online:
Modern Techniques in Biosensors

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 327))

  • 768 Accesses

Abstract

The multifunctional nature of the platelets made them as a significant disease biomarker and a potential drug target in several pathophysiological conditions. Platelet counts alongside its function, dictate disease pathophysiology in different disease aetiology (e.g., cardiovascular diseases, malignancies, diabetes, etc.). Technologies for estimating platelet number or determine function have traversed a long way, through the era of manual platelet tests to an era of automated and bedside platelet analysis systems. This chapter comprises of the state-of-the-art and emerging technologies in platelet diagnosis. A special emphasis has been given on how different technologies can be beneficial for the diseases diagnosis using platelet counts and functions as biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ribatti, D., Crivellato, E.: Giulio Bizzozero and the discovery of platelets. Leuk. Res. 31, 1339–1341 (2007)

    Article  Google Scholar 

  2. Garattini, S., de Gaetano, G., Samanin, R., Bernasconi, S., Roncaglioni, M.: Effects of trazodone on serotonin in the brain and platelets of the rat. Biochem. Pharmacol. 25, 13–16 (1976)

    Article  Google Scholar 

  3. Gauer, R.L., Braun, M.M.: Thrombocytopenia. Am. Family Phys. 85, 612–22 (2012)

    Google Scholar 

  4. Bleeker, J., Hogan, W.: Thrombocytosis: diagnostic evaluation, thrombotic risk stratification, and risk-based management strategies. Thrombosis 2011, 1–16 (2011)

    Article  Google Scholar 

  5. Gunay-Aygun, M., Zivony-Elboum, Y., Gumruk, F., Geiger, D., Cetin, M., Khayat, M., Kleta, R., Kfir, N., Anikster, Y., Chezar, J., Arcos-Burgos, M., Shalata, A., Stanescu, H., Manaster, J., Arat, M., Edwards, H., Freiberg, A., Hart, P., Riney, L., Patzel, K., Tanpaiboon, P., Markello, T., Huizing, M., Maric, I., Horne, M., Kehrel, B., Jurk, K., Hansen, N., Cherukuri, P., Jones, M., Cruz, P., Mullikin, J., Nurden, A., White, J., Gahl, W., Falik-Zaccai, T.: Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 116, 4990–5001 (2010)

    Article  Google Scholar 

  6. Berndt, M., Andrews, R.: Bernard-Soulier syndrome. Haematologica 96, 355–359 (2011)

    Article  Google Scholar 

  7. Bury, L., Malara, A., Momi, S., Petito, E., Balduini, A., Gresele, P.: Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Haematologica 104, 1473–1481 (2019)

    Article  Google Scholar 

  8. Sharma, G., Berger, J.: Platelet activity and cardiovascular risk in apparently healthy individuals: a review of the data. J. Thromb. Thrombolysis 32, 201–208 (2011)

    Article  Google Scholar 

  9. Davì, G., Patrono, C.: Platelet activation and atherothrombosis. N. Engl. J. Med. 357, 2482–2494 (2007)

    Article  Google Scholar 

  10. Vorchheimer, D., Becker, R.: Platelets in atherothrombosis. Mayo Clin. Proc. 81, 59–68 (2006)

    Article  Google Scholar 

  11. Lahiri, P., Roy, S., Sardar, P., Deb, S., Chakrabarti, P., Guha, P., Guha, S., Chaudhuri, U., Dasgupta, A.: Platelet responsiveness to yohimbine hydrochloride and MRS2179 in the context of the interaction between collagen and epinephrine in acute coronary syndrome. Blood Cells Mol. Dis. 43, 105–110 (2009)

    Article  Google Scholar 

  12. Hughes, A., McVerry, B., Wilkinson, L., Goldstone, A., Lewis, D., Bloom, A.: Diabetes, a hypercoagulable state? Haemostatic variables in newly diagnosed type 2 diabetic patients. Acta Haematol. 69, 254–259 (1983)

    Article  Google Scholar 

  13. Bambace, N., Holmes, C.: The platelet contribution to cancer progression. J. Thromb. Haemost. 9, 237–249 (2011)

    Article  Google Scholar 

  14. Jain, S., Harris, J., Ware, J.: Platelets. Arterioscler. Thromb. Vasc. Biol. 30, 2362–2367 (2010)

    Article  Google Scholar 

  15. Deb, S., Boknäs, N., Sjöström, C., Tharmakulanathan, A., Lotfi, K., Ramström, S.: Varying effects of tyrosine kinase inhibitors on platelet function—a need for individualized CML treatment to minimize the risk for hemostatic and thrombotic complications? Cancer Med. 9, 313–323 (2019)

    Article  Google Scholar 

  16. Izak, M., Bussel, J.: Management of thrombocytopenia. F1000Prime Rep. 6 (2014)

    Google Scholar 

  17. Azeredo, E., Monteiro, R., de-Oliveira Pinto, L.: Thrombocytopenia in dengue: interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediat. Inflamm. 2015, 1–16 (2015)

    Google Scholar 

  18. Schexneider, K.: Fibrin sealants in surgical or traumatic hemorrhage. Curr. Opin. Hematol. 11, 323–326 (2004)

    Article  Google Scholar 

  19. Gupta, N., Jain, U., Sahare, K., Bansal, S.: Study of thrombocytopenia in patients of malaria. Trop. Parasitol. 3, 58 (2013)

    Article  Google Scholar 

  20. Cecilia, D.: Current status of dengue and chikungunya in India. WHO South-East Asia J. Public Health 3, 22 (2014

    Google Scholar 

  21. Muley, A., Lakhani, J., Bhirud, S., Patel, A.: Thrombocytopenia in plasmodium vivax Malaria: how significant? J. Trop. Med. 2014, 1–4 (2014)

    Article  Google Scholar 

  22. Witters, P., Freson, K., Verslype, C., Peerlinck, K., Hoylaerts, M., Nevens, F., Van Geet, C., Cassiman, D.: Review article: blood platelet number and function in chronic liver disease and cirrhosis. Aliment. Pharmacol. Ther. 27, 1017–1029 (2008)

    Article  Google Scholar 

  23. Boccardo, P., Remuzzi, G., Galbusera, M.: Platelet dysfunction in renal failure. Semin. Thromb. Hemost. 30, 579–589 (2004)

    Article  Google Scholar 

  24. Catricala, S., Torti, M., Ricevuti, G.: Alzheimer disease and platelets: how’s that relevant. Immun. Ageing 9, 20 (2012)

    Article  Google Scholar 

  25. Zubenko, G., Cohen, B., Reynolds, C.F., III, Boller, F., Malinakova, I., Keefe, N.: Platelet membrane fluidity in Alzheimer's disease and major depression. Am. J. Psychiatry 144, 860–868 (1987)

    Google Scholar 

  26. Prodan, C., Ross, E., Stoner, J., Cowan, L., Vincent, A., Dale, G.: Coated-platelet levels and progression from mild cognitive impairment to Alzheimer disease. Neurology 76, 247–252 (2011)

    Article  Google Scholar 

  27. Hou, Y., Carrim, N., Wang, Y., Gallant, R., Marshall, A., Ni, H.: Platelets in hemostasis and thrombosis: novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J. Biomed. Res. (2015)

    Google Scholar 

  28. Holinstat, M.: Normal platelet function. Cancer Metastasis Rev. 36, 195–198 (2017)

    Article  Google Scholar 

  29. Brecher, G., Schneiderman, M., Cronkite, E.: The reproducibility and constancy of the platelet count. Am. J. Clin. Pathol. 23, 15–26 (1953)

    Article  Google Scholar 

  30. Ault, K.: Editorial. Lab. Hematol. 11, 235–235 (2005)

    Article  Google Scholar 

  31. Briggs, C., Harrison, P., Grant, D., Staves, J., Machin, S.: New quantitative parameters on a recently introduced automated blood cell counter—the XE 2100TM. Clin. Lab. Haematol. 22, 345–350 (2000)

    Article  Google Scholar 

  32. Kunicka, J., Fischer, G., Murphy, J., Zelmanovic, D.: Improved platelet counting using two-dimensional laser light scatter. Am. J. Clin. Pathol. 114, 283–289 (2000)

    Article  Google Scholar 

  33. Coulter, W.H.: Inventor. Means for counting particles suspended in a fluid. United States patent US 2,656,508 (1953)

    Google Scholar 

  34. Bandyopadhyay, S., Azharuddin, M., Dasgupta, A., Ganguli, B., SenRoy, S., Patra, H., Deb, S.: Probing ADP induced aggregation kinetics during platelet-nanoparticle interactions: functional dynamics analysis to rationalize safety and benefits. Front. Bioeng. Biotechnol. 7, (2019)

    Google Scholar 

  35. Solh, T., Botsford, A., Solh, M.: Glanzmann’s thrombasthenia: pathogenesis, diagnosis, and current and emerging treatment options. J. Blood Med. 6, 219–227 (2015)

    Article  Google Scholar 

  36. Ghoshal, K., Bhattacharyya, M.: Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. Sci. World J. 2014, 1–16 (2014)

    Article  Google Scholar 

  37. Duke, W.: The relation of blood platelets to hemorrhagic disease. J. Am. Med. Assoc. 55, 1185 (1910)

    Article  Google Scholar 

  38. Born, G.: Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194, 927–929 (1962)

    Article  Google Scholar 

  39. O’Brien, J.: Platelet aggregation: Part I Some effects of the adenosine phosphates, thrombin, and cocaine upon platelet adhesiveness. J. Clin. Pathol. 15, 446–452 (1962)

    Article  Google Scholar 

  40. Sun, B., Tandon, N., Yamamoto, N., Yoshitake, M., Kambayashi, J.: Luminometric assay of platelet activation in 96-well microplate. Biotechniques 31, 1174–1181 (2001)

    Article  Google Scholar 

  41. Armstrong, P., Dhanji, A., Truss, N., Zain, Z., Tucker, A., Mitchell, J., Warner, T.: Utility of 96-well plate aggregometry and measurement of thrombi adhesion to determine aspirin and clopidogrel effectiveness. Thromb. Haemost. 102, 772–778 (2009)

    Article  Google Scholar 

  42. Cardinal, D., Flower, R.: The electronic aggregometer: a novel device for assessing platelet behavior in blood. J. Pharmacol. Methods 3, 135–158 (1980)

    Article  Google Scholar 

  43. Pai, M., Wang, G., Moffat, K., Liu, Y., Seecharan, J., Webert, K., Heddle, N., Hayward, C.: Diagnostic usefulness of a lumi-aggregometer adenosine triphosphate release assay for the assessment of platelet function disorders. Am. J. Clin. Pathol. 136, 350–358 (2011)

    Article  Google Scholar 

  44. Campbell, J., Ridgway, H., Carville, D.: Plateletworks®. Mol. Diagn. Ther. 12, 253–258 (2008)

    Article  Google Scholar 

  45. van Werkum, J., Harmsze, A., Elsenberg, E., Bouman, H., ten Berg, J., Hackeng, C.: The use of the VerifyNowsystem to monitor antiplatelet therapy: a review of the current evidence. Platelets 19, 479–488 (2008)

    Article  Google Scholar 

  46. Linden, M., Frelinger, A., Barnard, M., Przyklenk, K., Furman, M., Michelson, A.: Application of flow cytometry to platelet disorders. Semin. Thromb. Hemost. 30, 501–511 (2004)

    Article  Google Scholar 

  47. Favaloro, E.: Clinical utility of the PFA-100. Semin. Thromb. Hemost. 34, 709–733 (2008)

    Article  Google Scholar 

  48. Favaloro, E.: Clinical application of the PFA-100®. Curr. Opin. Hematol. 9, 407–415 (2002)

    Article  Google Scholar 

  49. Rand, M., Leung, R., Packham, M.: Platelet function assays. Transfus. Apheres. Sci. 28, 307–317 (2003)

    Article  Google Scholar 

  50. Whiting, D., DiNardo, J.: TEG and ROTEM: technology and clinical applications. Am. J. Hematol. 89, 228–232 (2014)

    Article  Google Scholar 

  51. Luddington, R.: Thrombelastography/thromboelastometry. Clin. Lab. Haematol. 27, 81–90 (2005)

    Article  Google Scholar 

  52. Muir, A., McMullin, M., Patterson, C., McKeown, P.: Assessment of aspirin resistance varies on a temporal basis in patients with ischaemic heart disease. Heart 95, 1225–1229 (2008)

    Article  Google Scholar 

  53. Harrison, P.: Advances in platelet counting. Br. J. Haematol. 111, 733–744 (2000)

    Google Scholar 

  54. Nagy, M., Heemskerk, J., Swieringa, F.: Use of microfluidics to assess the platelet-based control of coagulation. Platelets 28, 441–448 (2017)

    Article  Google Scholar 

  55. Wang, Y., LeVine, D., Gannon, M., Zhao, Y., Sarkar, A., Hoch, B., Wang, X.: Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging. Biosens. Bioelectron. 100, 192–200 (2018)

    Article  Google Scholar 

  56. Ting, L., Feghhi, S., Taparia, N., Smith, A., Karchin, A., Lim, E., John, A., Wang, X., Rue, T., White, N., Sniadecki, N.: Contractile forces in platelet aggregates under microfluidic shear gradients reflect platelet inhibition and bleeding risk. Nat. Commun. 10 (2019)

    Google Scholar 

  57. Hussain, M., Gehring, F., Sinn, S., Northoff, H.: A straightforward detection of HIT Type II via QCM-D. UK J. Pharm. Biosci. 3, 18 (2015)

    Article  Google Scholar 

  58. Strallhofer, A., Jung, S., Jungbauer, C., Lieberzeit, P.: Development of a novel platelets functional assay using QCM. Proceedings 1, 514 (2017)

    Google Scholar 

  59. Kailashiya, J., Singh, N., Singh, S., Agrawal, V., Dash, D.: Graphene oxide-based biosensor for detection of platelet-derived microparticles: a potential tool for thrombus risk identification. Biosens. Bioelectron. 65, 274–280 (2015)

    Article  Google Scholar 

  60. Zhu, S., Welsh, J., Brass, L., Diamond, S.: Platelet-targeting thiol reduction sensor detects thiol isomerase activity on activated platelets in mouse and human blood under flow. J. Thromb. Haemost. 14, 1070–1081 (2016)

    Article  Google Scholar 

  61. Deb, S., Chowdhury, R., Sadhu, A., Chowdhury, A.R., Dasgupta, A.K., Dhara, A.K., Roy, K., Bhattacharyya, M., Chakrabarti, A.: A system and method for detecting platelet function using UV light and deep learning analysis of microscopic images. (Indian Patent and PCT, Application number 201931048635 [TEMP/E-1/51484/2019-KOL] date 2019/11/27)

    Google Scholar 

  62. Platelet Aggregation Devices Market. Growth, Trends, and Forecast (2020–2025), https://mordorintelligence.com/industry-reports/platelet-aggregation-devices-market

  63. Global Rugged Handheld Devices Market 2019–2023. 8% CAGR Projection Through 2023. Technavio, https://www.businesswire.com/news/home/20191213005108/en/Global-Rugged-Handheld-Devices-Market-2019-2023-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryyani Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, R., Deb, S. (2021). Platelets in Diagnostic. In: Dutta, G., Biswas, A., Chakrabarti, A. (eds) Modern Techniques in Biosensors. Studies in Systems, Decision and Control, vol 327. Springer, Singapore. https://doi.org/10.1007/978-981-15-9612-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9612-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9611-7

  • Online ISBN: 978-981-15-9612-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics