Skip to main content

Machine Learning Application in the Hybrid Optical Wireless Networks

  • Conference paper
  • First Online:
Machine Intelligence and Soft Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1280))

  • 456 Accesses

Abstract

Complex problems invariably involve big data. Machine learning (ML) deals with this big data. Machine learning does classification, regression and decision making better than human beings. Large data produced by communication networks can be utilized for deriving efficient optimized solutions. Network performance improves by usage of ML techniques for network design and management. In this article, we have summarized advanced ML techniques for network domain. Further, a survey of ML techniques in several network design problems done, and their performance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, B. Sinopoli, Cs2p: Improving video bitrate selection and adaptation with data-driven throughput prediction, in Proceedings of the 2016 ACM SIGCOMM Conference, pp. 272–285 (2016)

    Google Scholar 

  2. M. Dong, Q. Li, D. Zarchy, P.B. Godfrey, M. Schapira, fPCCg: re-architecting congestion control for consistent high performance, in 12th fUSENIXg Symposium on Networked Systems Design and Implementation (fNSDIg 15), pp. 395–408 (2015)

    Google Scholar 

  3. K. Winstein, H. Balakrishnan, Tcp ex machina: computer-generated congestion control. ACM SIGCOMM Comput. Commun. Rev. 43(4), 123–134 (2013)

    Article  Google Scholar 

  4. J. Zhang, C. Chen, Y. Xiang, W. Zhou, A.V. Vasilakos, An effective network traffic classification method with unknown flow detection. IEEE Trans. Netw. Serv. Manage. 10(2), 133–147 (2013)

    Article  Google Scholar 

  5. P.G. Bringas, Network traffic analysis for android malware detection, in Hybrid Artificial Intelligent Systems: 14th International Conference, HAIS 2019, Leon, Spain, September 4–6, 2019, Proceedings, vol. 11734 (Springer Nature, 2019), p. 468

    Google Scholar 

  6. J. Zhang, X. Chen, Y. Xiang, W. Zhou, J. Wu, Robust network traffic classification. IEEE/ACM Trans. Networking 23(4), 1257–1270 (2014)

    Article  Google Scholar 

  7. N. Kato, Z.M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, K. Mizutani, The deep learning vision for heterogeneous network traffic control: Proposal, challenges, and future perspective. IEEE Wirel. Commun. 24(3), 146–153 (2016)

    Article  Google Scholar 

  8. Z. Chen, J. Wen, Y. Geng, Predicting future traffic using hidden Markov models, in 2016 IEEE 24th International Conference on Network Protocols (ICNP) (IEEE, 2016), pp. 1–6

    Google Scholar 

  9. P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen, K. Chen, H. Jin, Online flow size prediction for improved network routing, in 2016 IEEE 24th International Conference on Network Protocols (ICNP) (IEEE, 2016), pp. 1–6

    Google Scholar 

  10. J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, H. Zhang, fCFAg: a practical prediction system for video qoe optimization, in 13th fUSENIXg Symposium on Networked Systems Design and Implementation (fNSDIg 16), pp. 137–150 (2016)

    Google Scholar 

  11. M. Xia, Y. Owada, M. Inoue, H. Harai, Optical and wireless hybrid access networks: design and optimization. J. Opt. Commun. Netw. 4(10), 749–759 (2012)

    Article  Google Scholar 

  12. T.T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutorials 10(4), 56–76 (2008)

    Article  Google Scholar 

  13. H. Mao, M. Alizadeh, I. Menache, S. Kandula, Resource management with deep reinforcement learning, in Proceedings of the 15th ACM Workshop on in Networking, pp. 50–56 (2016)

    Google Scholar 

  14. G. Kramer, What is next for ethernet pon?, in COIN-NGNCON 2006-The Joint International Conference on Optical Internet and Next Generation Network (IEEE, 2006), pp. 49–54

    Google Scholar 

  15. M.P.I. Dias, B.S. Karunaratne, E. Wong, Bayesian estimation and prediction-based dynamic bandwidth allocation algorithm for sleep/doze-mode passive optical networks. J. Light Wave Technol. 32(14), 2560–2568 (2014)

    Article  Google Scholar 

  16. L. Ruan, S. Mondal, E. Wong, Machine learning based bandwidth prediction in tactile Heterogeneous access networks, in IEEE INFOCOM 2018—Conference on Computer Communications Workshops, pp. 1–2 (2018)

    Google Scholar 

  17. J. Jiang, S. Sun, V. Sekar, H. Zhang, Pytheas: enabling data-driven quality of experience optimization using group-based exploration-exploitation, in 14th Symposium on Networked Systems Design and Implementation, pp. 393–406 (2017)

    Google Scholar 

  18. M. Louta, P. Sarigiannidis, S. Misra, P. Nicopolitidis, G. Papadimitriou, Rlam: a dynamic and efficient reinforcement learning-based adaptive mapping scheme in mobile wimax networks. Mobile Inf. Syst. 10(2), 173–196 (2014)

    Article  Google Scholar 

  19. S.M. Jafari, M. Taghipour, M. Meybodi, Bandwidth allocation in wimax networks using reinforcement learning. World Appl. Sci. J. 15(4), 525–531 (2011)

    Google Scholar 

  20. G. Alnwaimi, S. Vahid, K. Moessner, Dynamic heterogeneous learning games for opportunistic access in lte-based macro/femtocell deployments. IEEE Trans. Wireless Commun. 14(4), 2294–2308 (2014)

    Article  Google Scholar 

  21. P. Sarigiannidis, A. Sarigiannidis, I. Moscholios, P. Zwierzykowski, DIANA: a machine learning mechanism for adjusting the TDD uplink-downlink configuration in XG-PON-LTE systems. Mobile Inf. Syst. 2017 (2017)

    Google Scholar 

  22. V.S. Feng, S.Y. Chang, Determination of wireless networks parameters through parallel hierarchical support vector machines. IEEE Trans. Parallel Distrib. Syst. 23(3), 505–512 (2011)

    Google Scholar 

  23. S.Y. Han, N.B. Abu-Ghazaleh, D. Lee, Efficient and consistent path loss model for mobile network simulation. IEEE/ACM Trans. Networking 24(3), 1774–1786 (2015)

    Article  Google Scholar 

  24. R.D. Timoteo, D.C. Cunha, G.D. Cavalcanti, A proposal for path loss prediction in urban environments using support vector regression, in Proceedings of the Advanced International Conference on Telecommunications, pp. 1–5 (2014)

    Google Scholar 

  25. B. Bojovic, E. Meshkova, N. Baldo, J. Riihijarvi, M. Petrova, Machine learning-based dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments. EURASIP J. Wireless Commun. Network. 2016(1), p. 183 (2016)

    Google Scholar 

  26. V. Lopez, J.A. Hernandez, O.G. de Dios, J.F. Palacios, J. Aracil, Multilayer traffic engineering for IP over WDM networks based on Bayesian decision theory. IEEE/OSA J. Opt. Commun. Networking 2(8), 515–529 (2010)

    Article  Google Scholar 

  27. B. Mao, Z.M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, K. Mizutani, Routing or computing? The paradigm shift towards intelligent computer network packet transmission based on deep learning. IEEE Trans. Comput. 66(11), 1946–1960 (2017)

    Article  MathSciNet  Google Scholar 

  28. J. Mata, I. de Miguel, R.J. Duran, N. Merayo, S.K. Singh, A. Jukan, M. Chamania, Artificial intelligence (ai) methods in optical networks: a comprehensive survey. Opt. Switch. Network. 28, 43–57 (2018)

    Article  Google Scholar 

  29. A. Jukan, X. Masip-Bruin, N. Amla, Smart computing and sensing technologies for animal welfare: a systematic review. ACM Comput. Surv. (CSUR) 50(1), 1–27 (2017)

    Article  Google Scholar 

  30. S.K. Singh, F. Carpio, A. Jukan, Improving animal-human cohabitation with machine learning in fiber-wireless networks. J. Sensor Actuator Netw. 7(3), 35 (2018)

    Article  Google Scholar 

  31. Y. Kiran, T. Venkatesh, C.S.R. Murthy, A reinforcement learning framework for path selection and wavelength selection in optical burst switched networks. IEEE J. Sel. Areas Commun. 25(9), 18–26 (2007)

    Article  Google Scholar 

  32. T.R. Tronco, M. Garrich, A.C. Cesar, M. de Lacerda Rocha, Cognitive algorithm using fuzzy reasoning for software-defined optical network. Photon Netw. Commun. 32(2), 281–292 (2016)

    Article  Google Scholar 

  33. A. Sgambelluri, J.L. Izquierdo-Zaragoza, A. Giorgetti, L. Gifre, L. Velasco, F. Paolucci, N. Sambo, F. Fresi, P. Castoldi, A.C. Piat, et al., Fully disaggregated roadm white box with netconf/yang control, telemetry, and machine learning-based monitoring, in Optical Fiber Communication Conference, Optical Society of America, Tu3D–12 (2018)

    Google Scholar 

  34. I. Cunha, P. Marchetta, M. Calder, Y.C. Chiu, B.V. Machado, A. Pescape, V. Giotsas, H.V. Madhyastha, E. Katz-Bassett, Sibyl: a practical internet route oracle, in 13th fUSENIXg Symposium on Networked Systems Design and Implementation (fNSDIg 16), pp. 325–344 (2016)

    Google Scholar 

  35. W. Song, F. Zeng, J. Hu, Z. Wang, X. Mao, An unsupervised-learning-based method for multi-hop wireless broadcast relay selection in urban vehicular networks, in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (IEEE, 2017). pp. 1–5

    Google Scholar 

  36. Q. Dai, L. Zhu, P. Wang, G. Li, J. Chen, A machine learning based temporary base station (bs) placement scheme in booming customers circumstance, in International Conference on Communications and Networking in China (Springer, 2018), pp. 562–572

    Google Scholar 

  37. E. Balevi, R.D. Gitlin, Unsupervised machine learning in 5g networks for low latency communications, in 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC) (IEEE, 2017), pp. 1–2

    Google Scholar 

  38. S. Gosselin, J.L. Courant, S.R. Tembo, S. Vaton, Application of probabilistic modeling and machine learning to the diagnosis of FTTH GPON networks, in 2017 International Conference on Optical Network Design and Modeling (ONDM) (IEEE, 2017), pp. 1–3

    Google Scholar 

  39. S.R. Tembo, S. Vaton, J.L. Courant, S. Gosselin, A tutorial on the EM algorithm for Bayesian networks: application to self-diagnosis of GPON-FTTH networks, in 2016 International Wireless Communications and Mobile Computing Conference (IWCMC) (IEEE, 2016), pp. 369–376

    Google Scholar 

  40. K. Christodoulopoulos, N. Sambo, E. Varvarigos, Exploiting network Kriging for fault localization, in Optical Fiber Communication Conference, Optical Society of America, W1B–5 (2016)

    Google Scholar 

  41. A.P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni, L. Potı, L. Velasco, P. Castoldi, Ber degradation detection and failure identification in elastic optical networks. J. Lightwave Technol. 35(21), 4595–4604 (2017)

    Article  Google Scholar 

  42. A. Vela, B. Shariati, M. Ruiz, F. Cugini, A. Castro, H. Lu, R. Proietti, J. Comellas, P. Castoldi, S.J.B. Yoo et al., Soft failure localization during commissioning testing and lightpath operation. J. Opt. Commun. Network. 10(1), A27–A36 (2018)

    Article  Google Scholar 

  43. S. Shahkarami, F. Musumeci, F. Cugini, M. Tornatore, Machine-learning-based soft-failure detection and identification in optical networks, in 2018 Optical Fiber Communications Conference and Exposition (OFC) (IEEE, 2018), pp. 1–3

    Google Scholar 

  44. D. Rafique, T. Szyrkowiec, A. Autenrieth, J.P. Elbers, Analytics-driven fault discovery and diagnosis for cognitive root cause analysis, in Optical Fiber Communication Conference, Optical Society of America, W4F–6 (2018)

    Google Scholar 

  45. M.S. Parwez, D.B. Rawat, M. Garuba, Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network. IEEE Trans. Industr. Inf. 13(4), 2058–2065 (2017)

    Article  Google Scholar 

  46. K. Tsagkaris, A. Katidiotis, P. Demestichas, Neural network-based learning schemes for cognitive radio systems. Comput. Commun. 31(14), 3394–3404 (2008)

    Article  Google Scholar 

  47. L. Giupponi, A.I. Perez-Neira, Fuzzy-based spectrum handoff in cognitive radio networks, in 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom) (IEEE, 2008), pp. 1–6

    Google Scholar 

  48. V.K. Tumuluru, P. Wang, D. Niyato, A neural network-based spectrum prediction scheme for cognitive radio, in 2010 IEEE International Conference on Communications (IEEE, 2010), pp. 1–5

    Google Scholar 

  49. N. Sharma, A. Madhukumar, Genetic algorithm aided proportional fair resource allocation in multicast ofdm systems. IEEE Trans. Broadcast. 61(1), 16–29 (2015)

    Article  Google Scholar 

  50. K. Muralitharan, R. Sakthivel, R. Vishnuvarthan, Neural network-based optimization approach for energy demand prediction in smart grid. Neurocomputing 273, 199–208 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naik, D., De, T. (2021). Machine Learning Application in the Hybrid Optical Wireless Networks. In: Bhattacharyya, D., Thirupathi Rao, N. (eds) Machine Intelligence and Soft Computing. Advances in Intelligent Systems and Computing, vol 1280. Springer, Singapore. https://doi.org/10.1007/978-981-15-9516-5_41

Download citation

Publish with us

Policies and ethics