Skip to main content

Noise Resilient Thresholding Based on Fuzzy Logic and Non-linear Filtering

  • Chapter
  • First Online:
Machine Learning for Intelligent Multimedia Analytics

Part of the book series: Studies in Big Data ((SBD,volume 82))

  • 598 Accesses

Abstract

This chapter proposes a novel image thresholding technique resilient to noise based on the fuzzy logic and the non-linear filtering. The rationale of the proposed technique is to use adaptive Kuwahara filtering, which essentially suppresses the noise while retaining the image texture information. Finally, an optimized threshold selection process is formalized using the fuzzy logic properties. The performance of the proposed technique is then evaluated by extensive experiments on different types of synthetic, real-world images, and floor plan images. Finally, the superiority of the proposed technique is carried out by detailed comparison with the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.S. Weszka, A survey of threshold selection techniques. Comp. Graph. Image Process. 7(2), 259–265 (1978)

    Article  Google Scholar 

  2. C.-H. Chou, W.-H. Lin, F. Chang, A binarization method with learning-built rules for document images produced by cameras. Pattern Recognit. 43, 1518–1530 (2010)

    Article  Google Scholar 

  3. M. Azarbad, A. Ebrahimzade, V. Izadian, Segmentation of infrared images and objectives detection using maximum entropy method based on the bee algorithm. J. Comput. Inf. Syst. Ind. Manag. Appl. 3, 26–33 (2011)

    Google Scholar 

  4. S. Fan, S. Yang, P. He, H. Nie, Infrared electric image thresholding using two-dimensional fuzzy Renyi entropy. Energy Procedia 12, 411–419 (2011)

    Article  Google Scholar 

  5. M. Sezgin, R. Tasaltin, A new dichotomization technique to multilevel thresholding devoted to inspection applications. Pattern Recognit. Lett. 21, 151–161 (2000)

    Article  Google Scholar 

  6. M. Ma, J. Liang, M. Guo, Y. Fan, Y. Yin, SAR image segmentation based on Arti- ficial Bee Colony algorithm. Appl. Soft Comput. 11, 5205–5214 (2011)

    Article  Google Scholar 

  7. M. Maitra, A. Chatterjee, A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging. Measurement 41, 1124–1134 (2008)

    Article  Google Scholar 

  8. N.P. Sathya, R. Kayalvizhi, Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm. Neurocomputing 74, 2299–2313 (2011)

    Article  Google Scholar 

  9. P.K. Sahoo, S. Soltani, A. Wong, A survey of thresholding techniques. Comput. Vision Graph. Image Process. 41(2), 233–260 (1988)

    Article  Google Scholar 

  10. M. Sezgin, Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imag. 13, 146–168 (2004)

    Article  Google Scholar 

  11. W. Lievers and A. Pilkey, An evaluation of global thresholding techniques for the automatic image segmentation of automotive aluminum sheet alloys. Mater. Sci. Eng.: A, 381, 134–142 (2004)

    Google Scholar 

  12. N. Otsu, A threshold selection method from gray-level histograms. IEEE. Trans. Syst. Man. Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  13. J. Kapur, P.K. Sahoo, A. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29, 273–285 (1985)

    Article  Google Scholar 

  14. C.H. Li, C. Lee, Minimum cross entropy thresholding. Pattern Recognit. 26, 617–625 (1993)

    Article  Google Scholar 

  15. P. Sahoo, C. Wilkins, J. Yeager, Threshold selection using Renyi’s entropy. Pattern Recognit. 30, 71–84 (1997)

    Article  Google Scholar 

  16. M.P. Albuquerque, I. Esquef, A.G. Mello, Image thresholding using Tsallis entropy. Pattern Recognit. Lett. 25, 1059–1065 (2004)

    Article  Google Scholar 

  17. H. Cheng, J.-R. Chen, J. Li, Threshold selection based on fuzzy c-partition entropy approach. Pattern Recognit. 31, 857–870 (1998)

    Article  Google Scholar 

  18. S.H. Kwon, Threshold selection based on cluster analysis. Pattern Recognit. Lett. 25, 1045–1050 (2004)

    Article  Google Scholar 

  19. Z. Wang, A new approach for segmentation and quantification of cells or nanoparticles. IEEE. Trans. Ind. Infor. 12, 962–971 (2016)

    Article  Google Scholar 

  20. J.-C. Yen, F.-J. Chang, S. Chang, A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 4, 370–378 (1995)

    Article  Google Scholar 

  21. J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18 (2011)

    Article  Google Scholar 

  22. S. Dey, I. Saha, S. Bhattacharyya, U. Maulik, Multi-level thresholding using quantum inspired meta-heuristics. Knowl. Based Syst. 67, 373–400 (2014)

    Article  Google Scholar 

  23. W.A. Hussein, S. Sahran, S.N. Huda, S. Abdullah, A fast scheme for multilevel thresholding based on a modified bees algorithm. Knowl. Based Syst. 101, 114–134 (2016)

    Article  Google Scholar 

  24. K. Hammouche, M. Diaf, P. Siarry, A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng. Appl. Artif. Intell. 23, 676–688 (2010)

    Article  Google Scholar 

  25. X.-Y. Wang, J. Bu, A fast and robust image segmentation using FCM with spatial information. Digital Signal Processing 20, 1173–1182 (2010)

    Article  Google Scholar 

  26. S. Aja-Fernández, A.H. Curiale, G.V.-S. Ferrero, A local fuzzy thresholding methodology for multiregion image segmentation. Knowl. Based Syst. 83, 1–12 (2015)

    Google Scholar 

  27. H.D. Cheng, X.H. Jiang, Y. Sun, J.J. Wang, Color image segmentation: advance and prospects. Pattern Recogn. 34, 2259–2281 (2001)

    Article  Google Scholar 

  28. K. Bartyzel1, Adaptive Kuwahara filter. Sig. Ima. Video Proce., 10, 663–670 (2016)

    Google Scholar 

  29. D. Wu, Twelve considerations in choosing between Gaussian and trapezoidal membership functions in interval type-2 fuzzy logic controllers, in IEEE International Conference on Fuzzy Systems, Brisbane, pp. 1–8 (2012)

    Google Scholar 

  30. A. Barua, L.S. Mudunuri, O. Kosheleva, Why trapezoidal and triangular membership functions work so well: Towards a theoretical explanation. J. Uncertain Syst. 8, 164–168 (2014)

    Google Scholar 

  31. M. Sezgin, B. Sankur, Selection of thresholding methods for nondestructive testing applications, in Proceedings International Conference on Image Processing, vol. 3, pp. 764–767 (2001)

    Google Scholar 

  32. A. Kouhi, H. Seyedarabi, A. Aghagolzadeh, Robust FCM clustering algorithm with combined spatial constraint and membership matrix local information for brain MRI segmentation. Expert Syst. Appl. 146 (2020)

    Google Scholar 

  33. Q. Wang, X. Wang, C. Fang, W. Yang, Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation. Appl. Soft Comput. 92 (2020)

    Google Scholar 

  34. J. Jia, B. Liu, L. Jiao, Soft spectral clustering ensemble applied to image segmentation. Front. Comput. Sci. China 5, 66–78 (2011)

    Article  MathSciNet  Google Scholar 

  35. J. GalbiatiHéctor, A. Becerra, Dynamic Image Segmentation Method Using Hierarchical Clustering, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2009, Lecture Notes in Computer Science, vol. 5856, pp. 177–184 (2009)

    Google Scholar 

  36. I.A. Pestunov, S.A. Rylov, V.B. Berikov, Hierarchical clustering algorithms for segmentation of multispectral images. Optoelectron. Instrument. Proc. 51, 329–338 (2015)

    Article  Google Scholar 

  37. X. Yu, Fuzzy infrared image segmentation based on multilayer immune clustering neural network. Optik 140, 959–963 (2017)

    Article  Google Scholar 

  38. Y. Duan, F. Liu, L. Jiao, P. Zhao, L. Zhang, SAR Image segmentation based on convolutional-wavelet neural network and markov random field. Pattern Recogn. 64, 255–267 (2017)

    Article  Google Scholar 

  39. B. Skourt, A. El Hassani, A. Majda, Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 127, 109–113 (2018)

    Article  Google Scholar 

  40. R. Haq, A. Hotca, A. Apte, A. Rimner, J.O. Deasy, M. Thor, Cardio-pulmonary substructure segmentation of radiotherapy computed tomography images using convolutional neural networks for clinical outcomes analysis. Phys. Imaging Radiation Oncol. 14, 61–66 (2020)

    Article  Google Scholar 

  41. F. Sultana, A. Sufian, P. Dutta, Evolution of image segmentation using deep convolutional neural network: a survey. Knowl.-Based Syst., 201–202 (2020)

    Google Scholar 

  42. S.P. Awate, S. Garg, R. Jena, Estimating uncertainty in MRF-based image segmentation: A perfect-MCMC approach. Med. Image Anal. 55, 181–196 (2019)

    Article  Google Scholar 

  43. Z. Liu, H. Kodamana, A. Afacan, B. Huang, A GMM-MRF Based Image Segmentation Approach for Interface Level Estimation 52, 28–33 (2019)

    Google Scholar 

  44. C. Hu, W. Fan, J. Du, Y. Zeng, Model-Based segmentation of image data using spatially constrained mixture models. Neurocomputing 283, 214–227 (2018)

    Article  Google Scholar 

  45. D.N. Liu, R. Hou, W.Z. Wu, J.W. Hua, X.Y. Wang, B. Pang, Research on infrared image enhancement and segmentation of power equipment based on partial differential equation. J. Vis. Commun. Image Representation 64 (2019)

    Google Scholar 

  46. Y. Wang, Q. Yuan, C. He, Indirect diffusion based level set evolution for image segmentation. Appl. Math. Model. 69, 714–722 (2019)

    Article  MathSciNet  Google Scholar 

  47. D. Yeo, C.-O. Lee, Variational shape prior segmentation with an initial curve based on image registration technique. Image Vis. Comput. 94 (2020)

    Google Scholar 

  48. R. Kumar, S. Srivastava, R. Srivastava, A fourth order PDE based fuzzy c-means approach for segmentation of microscopic biopsy images in presence of Poisson noise for cancer detection. Comput. Methods Programs Biomed. 146, 59–68 (2017)

    Article  Google Scholar 

  49. X. Zhang, P. Xiao, X. Feng, Object-specific optimization of hierarchical multiscale segmentations for high-spatial resolution remote sensing images. ISPRS J. Photogram. Remote Sens. 159, 308–321 (2020)

    Article  Google Scholar 

  50. W. Dan, H. Guoqing, L. Chengzhi, Multi-path connected network for medical image segmentation. J. Vis. Commun. Image Represent. (2020). https://doi.org/10.1016/j.jvcir.2020.102852 (In Press)

    Article  Google Scholar 

  51. Y. Yang, R. Wang, C. Feng, Level set formulation for automatic medical image segmentation based on fuzzy clustering. Signal Process. Image Commun. 87, article id. 115907 (2020)

    Google Scholar 

  52. M. Lan, Y. Zhang, L. Zhang, B. Du, Global context based automatic road segmentation via dilated convolutional neural network. Inf. Sci. 535, 156–171 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreya Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, S., Bhatnagar, G., Chattopadhyay, C. (2021). Noise Resilient Thresholding Based on Fuzzy Logic and Non-linear Filtering. In: Kumar, P., Singh, A.K. (eds) Machine Learning for Intelligent Multimedia Analytics. Studies in Big Data, vol 82. Springer, Singapore. https://doi.org/10.1007/978-981-15-9492-2_7

Download citation

Publish with us

Policies and ethics