Skip to main content

Skin Cancer Induced by Pollution-Mediated ROS

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects
  • 111 Accesses

Abstract

The incidence of skin cancer is indeed alarming. More people are diagnosed with skin cancer each year than all other cancers combined. In the USA, one in five will develop skin cancer by the age of 70; each year, more than 24,000 Americans die of skin cancers – the most lethal of which are increased by environmental pollution. Physicians have realized for decades that UVB initiates skin cancer, but only recently have medical researchers learned that UVA interacts with airborne pollutants synergistically to initiate and promote skin cancer. Also, ubiquitous environmental pollutants – including ozone, polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides, volatile organic compounds (VOCs) – generate reactive oxygen species (ROS) which oxidize epidermal lipids, inducing a cascade of cellular stress reactions that can initiate skin cancer. Furthermore, environmental toxins are carried on the surface and within the core of particulate matter (PM). This PM can be absorbed cutaneously to deep epidermal layers and can enter the dermis through hair follicles as well as via blood flow after respiratory pulmonary absorption. The xenobiotic pollutants act by binding to the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor found in all types of skin cells – keratinocytes, melanocytes, fibroblasts, and dermal dendritic cells. For full protection from the environmental damage (extrinsic aging and skin cancer), certainly sunscreens that filter UVA as well as UVB are necessary, but sunscreens are not enough! To combat the dangerous oxidative damage induced by airborne pollutants, correctly formulated topical antioxidants can effectively protect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-ABP:

4-aminobiphenyl

ARNT:

AHR nuclear translocator

AHR:

aryl hydrocarbon receptor

AHRR:

AHR repressor

BaP:

benzo[a]pyrene

BCC:

basal cell carcinoma

bFGF:

basic fibroblast growth factor

BPDE:

BaP diol epoxide

CAP:

concentrated ambient particles

CO:

carbon monoxide

COX-1, −2:

cyclooxygenase-1, −2

CPD:

cyclobutane pyrimidine dimer

cSRC:

“cellular sarcoma,” photo oncogene tyrosine-protein kinase

CYP:

cytochrome P450

EGFR:

epidermal growth factor receptor

ERK-1,-2:

extracellular signal-regulated kinase-1,-2

FICZ:

6-formylindolo[3,2b]carbazole

GPx:

glutathione peroxidase

HNE:

4-hydroxy-2-nonenal (protein adduct)

H2O2:

hydrogen peroxide

HSP-27,-32,-70,-90:

heat shock proteins-27,-32,-70,-90

ICAM:

intercellular adhesion molecule

IcdP:

indole [1,2,3-cd]pyrene

Iℓ-1α,-1b,-8:

interleukin-1α,-1b,-8

LDH:

lactate dehydrogenase

MAPK:

mitogen-activated protein kinases

MCP-1:

monocyte chemoattractant protein-1

MED:

minimal erythema dose

MMP:

matrix metalloproteinases

NF-κB:

nuclear factor of kappa-light-chain polypeptide gene enhancer in B-cells

NNN:

N-nitrosonornicotine

NOx:

nitrous oxide

NO2:

nitrogen dioxide

NRF2:

nuclear transcription factor (erythroid-derived 2)-like2

8-OHdG:

8-hydroxy deoxyguanosine

O3:

ozone

PAH:

polycyclic aromatic hydrocarbons

PM:

particulate matter

PM10, PM2.5:

PM with diameter ≤10 μm, ≤2.5 μm

ppm:

parts per million

PR:

progesterone receptor

PRE:

progesterone response element

PRP:

progesterone receptor + progesterone complex

PUVA:

psoralen plus UVA

RHE:

reconstructed human epidermis

ROS:

reactive oxygen species

SCC:

squamous cell carcinoma

SOD-1:

superoxide dismutase-1

TCDD:

tetrachlorodibenzo-p-dioxin

TGF-β:

transforming growth factor β

TIMP:

tissue inhibitors of metalloproteinases

TNF-α,-β:

tumor necrosis factor-α,-β

Trp:

tryptophan

UFP:

ultrafine particles (<100 nm)

UV:

ultraviolet

VCAM:

vascular cell adhesion molecule

VOC:

volatile organic compounds

WHO:

World Health Organization

References

  • Akhtar FZ, Garabrant DH, Ketchum NS, Michalek JE (2004) Cancer in US Air Force veterans of the Vietnam War. J Occup Environ Med 46:123–136. https://doi.org/10.1097/01.jom.0000111603.84316.0f

    Article  PubMed  Google Scholar 

  • Appenzeller B, Tsatsakis A (2011) Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: state of the art, critical review and future needs. Toxicol Lett 210:119–140

    Article  PubMed  Google Scholar 

  • Boo YC (2019) Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants 6(379):1–18

    Google Scholar 

  • Bryant MS, Vineis P, Skipper PL, Tannenbaum SR (1998) Haemoglobin adducts of aromatic amines in people exposed to cigarette smoke. IARC Sci Publ 89:133–136

    Google Scholar 

  • Burke KE, Clive J, Combs GF Jr, Commisso J, Keen CL, Nakamura RM (2000) The effects of topical and oral vitamin E on pigmentation and skin cancer induced by ultraviolet irradiation in Skh:2 hairless mice. Nutr Cancer 38:87–97

    Article  CAS  PubMed  Google Scholar 

  • Burke KE (2017) Chapter 24: Photodamage: protection and reversal with topical antioxidants. In: Baran R, Maibach HI (eds) Textbook of cosmetic dermatology, 5th edn. Taylor and Frances, Boca Raton, pp 199–213

    Google Scholar 

  • Cadet J, Douki T (2018) Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 17:1816–1841

    Article  CAS  PubMed  Google Scholar 

  • Caley MP, Martins VLC, O’Toole EA (2015) Metalloproteinases and wound healing. Adv Wound Care 4:225–234. https://doi.org/10.1089/wound.2014.0581

    Article  Google Scholar 

  • Casale GP, Singhai M, Bhattacharya S (2001) Detection and quantification of depurinated benzo[a]pyrene-adducted DNA bases in the urine of cigarette smokers and women exposed to household coal smoke. Chem Res Toxicol 14:192–201

    Article  CAS  PubMed  Google Scholar 

  • Cervellati F, Benedusi M, Manarini F, Woodby B, Russo M, Valacchi G, Pietrogrande MC (2020) Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240:124746–124753. https://doi.org/10.1016/j.chemosphere.2019.124746

    Article  CAS  PubMed  Google Scholar 

  • Claffey DJ, Stout PR, Ruth JA (2001) 3H-nicotine, 3H-flunitrazepam, and 3H-cocaine incorporation into melanin: a model for the examination of drug-melanin interactions. J Anal Toxicol 25:607–611

    Article  CAS  PubMed  Google Scholar 

  • Contador-Troca M, Alvarez-Barrientos A, Barrasa E, Rico-Leo EM, Catalina-Fernandez L, Menacho-Marquez M, Bustelo XR, Garcia-Borron JC, Gomez-Duran A, Saenz-Santaaria J et al (2013) The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carciogenesis 34:2683–2693

    Article  CAS  Google Scholar 

  • Coppe J-P, Boysen M, Sun CH, Wong BJF, Kang MK, Park N-H, Desprez P-Y, Campisi J, Krtolica A (2008) A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. Mol Cancer Res 6:1085–1098. https://doi.org/10.1158/1541-7786.MCR-08-0062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin GM, Hanausek M, Salaszek Z et al (2006) Short-term biomarkers of cigarette smoke condensate tumor promoting potential in mouse skin. Toxicol Sci 89:66–74

    Article  CAS  PubMed  Google Scholar 

  • De Gruiji FR (2000) Photocarcinogenesis: UVA vs UVB. Methods Enzymol 319:359–366

    Article  Google Scholar 

  • De Hertog SA, Wensveen CA, Bastiaens MT et al (2001) Relation between smoking and skin cancer. J Clin Oncol 19:231–238

    Article  PubMed  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Eftim SE, Samet JM, Janes H, McDermott A, Dominici F (2008) Fine particulate matter and mortality: a comparison of the six cities and American Cancer Society cohorts with a medicate cohort. Epidemiology 19:209–216

    Article  PubMed  Google Scholar 

  • Erbagci Z, Erkilic S (2002) Can smoking and/or occupational UV exposure have any role in the development of the morpheaform basal cell carcinoma? A critical role for peritumoral mast cells. Int J Dermatol 41:275–278

    Article  PubMed  Google Scholar 

  • Fortino V, Maioli E, Torricelli C, Davis P, Valacchi G (2007) Cutaneous MMPs are differently modulated by environmental stressors in old and young mice. Toxicol Lett 173:73–79

    Article  CAS  PubMed  Google Scholar 

  • Fuks KB, Woodby B, Valacchi G (2019) Skin damage by tropospheric ozone. Hautarzt 70:163–168. https://doi.org/10.1007/s00105-019-4361-4

    Article  CAS  PubMed  Google Scholar 

  • Gottipati KR, Poulsen H, Starcher B (2008) Passive cigarette smoke exposure inhibits ultraviolet light B-induced skin tumors in SKH-1 hairless mice by blocking the nuclear factor kappa B signaling pathway. Exp Dermatol 17(9):780–787. https://doi.org/10.1111/j.1600-0625.2007.00685.x

    Article  PubMed  Google Scholar 

  • Green A, McCredie M, MacKie R et al (1999) A case-control study of melanomas of the soles and palms (Australia and Scotland). Cancer Causes Control 10:21–25

    Article  CAS  PubMed  Google Scholar 

  • Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7:833–839. https://doi.org/10.1038/89961

    Article  CAS  PubMed  Google Scholar 

  • Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado M, Haller M, Riley JS, Mason SM, Athineos D, Parsons MJ, vandeKooij B, Bouchier-Hayes L, Chalmers AJ, Rooswinkel RW, Oberst A, Blyth K, Rehm M, Murphy DJ, Tait SW (2015) Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell 57:860–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabat GC, Chang CJ, Wynder EL (1994) The role of tobacco, alcohol use, and body mass index in oral and pharyngeal cancer. Int J Epidemiol 23:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Kammer R, Tinnerberg H, Briksson K (2011) Evaluation of a tape-stripping technique for measuring dermal exposure to pyrene and benzo[a]pyrene. J Environ Monit 13:2165–2171

    Article  CAS  PubMed  Google Scholar 

  • Kelfkens G, de Gruijl FR, van der Leun JC (1991) Tumorigenesis by short-wave ultraviolet A: papillomas versus squamous cell carcinomas. Carcinogenesis 12:1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Otberg N, Jacobi U, Hoffman RM, Blume-Peytavi U (2005) Follicular penetration and targeting. J Investig Dermatol Symp Proc 10:301–303. https://doi.org/10.1111/j.1087-0024.2005.10121.x

    Article  PubMed  Google Scholar 

  • Larigot L, Juricek L, Dairou J, Coumoul X (2018) AhR signaling pathways and regulatory functions. Biochim Open 7:1–9. https://doi.org/10.1016/j.biopen.2018.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnani ND, Muresan XM, Belmonte G, Cervellati F, Sticozzi C, Pecorelli A, Miracco C, Marchini T, Evelson P, Valacchi G (2016) Skin damage mechanisms related to airborne particulate matter exposure. Toxicol Sci 149:227–236. https://doi.org/10.1093/toxsci/kfv230

    Article  CAS  PubMed  Google Scholar 

  • Marchini T, Magnani ND, Paz ML, Vanasco V, Tasat D, Gonzalez Maglio DH, Alvarez S, Evelson PA (2014) Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash. Toxicol Appl Pharmacol 274:274–282

    Article  CAS  PubMed  Google Scholar 

  • Modi BG, Neustadter J, Binda E, Lewis J, Filler RB, Roberts SJ, Kwong BY, Reddy S, Overton JD, Galan A et al (2012) Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science 335:104–108. https://doi.org/10.1126/science.1211600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore TO, Moore AY, Carrasco D et al (2001) Human papilloma virus, smoking, and cancer. J Cutan Med Surg 5:323–328

    Article  PubMed  Google Scholar 

  • Moreau M, Ouellet N, Ayotte P, Bouchard M (2018) Effects of intravenous benzo[a]pyrene dose administration on levels of exposure biomarkers, DNA adducts, and gene expression in rats. J Toxicol Environ Health A 78:166–184. https://doi.org/10.1080/15287394.2014.954072

    Article  CAS  Google Scholar 

  • Murray JC, Burch JA, Streilein RD et al (2008) Topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet radiation. J Am Acad Dermatol 59:418–425

    Article  PubMed  Google Scholar 

  • Muscat JE, Richie JP Jr, Thompson S, Wynder EL (1996) Gender differences in smoking and risk for oral cancer. Cancer Res 56:5192–5197

    CAS  PubMed  Google Scholar 

  • Nuvolone D, Petri D, Voller F (2018) The effects of ozone on human health. Environ Sci Pollut Res Int 25:8074–8088. https://doi.org/10.1007/s11356-017-9239-3

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell EF, Kopparapu PR, Koch DC, Jang HS, Phillips JL, Tanguay RL, Kerkvliet NI, Kolluri SK (2012) The aryl hydrocarbon receptor mediates leflunomide-induced growth inhibition of melanoma cells. PLoS One 7:e40926. https://doi.org/10.1371/journal.pone.0040926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz A, Grando SA (2012) Smoking and the skin. Int J Dermatol 51:250–262

    Article  CAS  PubMed  Google Scholar 

  • Pavlou P, Rallis M, Deliconstantinos G, Papaloannou G, Grando SA (2009) In-vivo data on the influence of tobacco smoke and UV light on murine skin. Toxicol Ind Health 25:231–239

    Article  CAS  PubMed  Google Scholar 

  • Pinnell SR, Yang HS, Omar M, Monteiro-Riviere N, DeBuys HV, Walker LC, Wang Y, Levine M (2001) Topical L-ascorbic acid: percutaneous absorption studies. Dermatol Surg 27:137–142

    CAS  PubMed  Google Scholar 

  • Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17:E868. https://doi.org/10.3390/ijms17060868

    Article  CAS  PubMed  Google Scholar 

  • Puntoni R, Ceppi M, Gennaro V, Ugolini D, Puntoni M, La Manna G et al (2004) Occupational exposure to carbon black and risk of cancer. Cancer Causes Control 15:511–516

    Article  PubMed  Google Scholar 

  • Puri P, Nandar SK, Kathuria S, Ramesh V (2017) Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol 83:415–423. https://doi.org/10.4103/0378-6323.199579

    Article  PubMed  Google Scholar 

  • Saladi R, Austin L, Gao D, Lu Y, Phelps R, Lebwohl M, Wei H (2003) The combination of benzo[a]pyrene and ultraviolet A causes an in vivo time-related accumulation of DNA damage in mouse skin. Photochem Photobiol 77:413–419

    Article  CAS  PubMed  Google Scholar 

  • Sauvaigo S, Bonnet-Duquennoy M, Odin F et al (2007) DNA repair capacities of cutaneous fibroblasts: effect of sun exposure, age and smoking on response to an acute oxidative stress. Br J Dermatol 157:26–32

    Article  CAS  PubMed  Google Scholar 

  • Sheu R, Stönner C, Ditto JC, Klüpfel T, Williams J, Gentner DR (2020) Human transport of thirdhand tobacco smoke: a prominent source of hazardous air pollutants into indoor nonsmoking environments. Environ Stud 6:eaay4109. https://doi.org/10.1126/sciadv.aay4109

    Article  CAS  Google Scholar 

  • Shimizu T, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J, Fujii-Kurlyama Y, Ishikawa T (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 97:779–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindo Y, Witt E, Han D, Packer L (1994) Dose response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. J Invest Dermatol 23:470–475

    Article  Google Scholar 

  • Shyong EQ, Lu Y, Goldstein A, Lebwohl M, Wei H (2003) Synergistic enhancement of H2O2 production in human epidermoid carcinoma cells by benzo[a]pyrene and ultraviolet A radiation. Toxicol Appl Pharmacol 188:104–109

    Article  CAS  PubMed  Google Scholar 

  • Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC et al (2012) Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 264:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JB, Fenske NA (1996) Cutaneous manifestations and consequences of smoking. J Am Acad Dermatol 34:717–732

    Article  CAS  PubMed  Google Scholar 

  • Smith JB, Randle HW (2001) Giant basal cell carcinoma and cigarette smoking. Cutis 67:73–76

    CAS  PubMed  Google Scholar 

  • Soeur J, Bolandi J-P, Chollet C, Denat L, Dimitrov A, Jones C, Perez P, Zanini M, Zobiri O, Mezzache S, Erdmann D, Lereaux G, Eilstein J, Marrot L (2017) Photo-pollution stress in skin. Traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J Dermatol Sci 8:162–169

    Article  Google Scholar 

  • Sowada J, Schmalenberger A, Ebner I, Luch A, Tralau T (2014) Degradation of benzo[a]pyrene by bacterial isolates from human skin. FEMS Microbiol Ecol 88:129–139

    Article  CAS  PubMed  Google Scholar 

  • Thiele JJ, Traber MG, Tsang K, Cross CE, Packer L (1997) In vivo exposure to ozone depletes vitamins C and E and induces lipid peroxidation in epidermal layers of murine skin. Free Radic Biol Med 23:385–391. https://doi.org/10.1016/S0891-5849(96)00617-X

    Article  CAS  PubMed  Google Scholar 

  • Valacchi G, Weber SU, Luu C, Cross CE, Packer L (2000) Ozone potentiates vitamin E depletion by ultraviolet radiation in the murine stratum corneum. FEBS Lett 466:165–168

    Article  CAS  PubMed  Google Scholar 

  • Valacchi G, Pagnin E, Okamoto T, Corbacho AM, Olano E, Davis PA et al (2003) Induction of stress proteins and MMP-9 by 0.8 ppm of ozone in murine skin. Biochem Biophys Res Commun 305(3):741–746. https://doi.org/10.1016/S0006-291X(03)00812-X

    Article  CAS  PubMed  Google Scholar 

  • Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E (2012) Cutaneous responses to environmental stressors. Ann N Y Acad Sci 1271:75–81. https://doi.org/10.1111/j.1749-6632.2012.06724.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valacchi G, Sticozzi C, Belmonte G, Cervellati F, Demaude F, Chen N, Krol Y, Oresajo C (2015) Vitamin C compound mixtures prevent ozone-induced oxidative damage in human keratinocytes as initial assessment of pollution protection. PLoS One 10:e0131097. https://doi.org/10.1371/journal.pone.0131097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valacchi G, Pecorelli A, Belmonte G, Pambianchi E, Cervellati F, Lynch S, Krol Y, Oresajo C (2017) Protective effects of topical vitamin C compound mixtures against ozone-induced damage in human skin. J Invest Dermatol 137:1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Villano CM, Murphy KA, Akintobi A, White LA (2006) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicol Appl Pharmacol 210:212–224. https://doi.org/10.1016/j.taap.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  • Vogeley C, Esser C, Tüting T, Krutmann J, Haarmann-Stemmann T (2019) Role of the aryl hydrocarbon receptor in environmentally induced skin aging and skin carcinogenesis. Int J Mol Sci 20:6005–6026. https://doi.org/10.3390/ijms20236005

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Y, Saladi R, Wei H (2003) Synergistic carcinogenesis of chemical carcinogens and long wave-length UVA radiation. Trends Photochem Photobiol 10:31–45

    Google Scholar 

  • Wei H, Saladi R, Lu Y, Wang Y, Palep SR, Moore J, Phelps R, Shyong E, Lebwohl MG (2003) Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr 133:3811S–3819S

    Google Scholar 

  • Xu X, Wang Y, Chen Z, Sternlicht MD, Hidalgo M, Steffensen B (2005) Matrix metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer Res 65:130–136

    Article  CAS  PubMed  Google Scholar 

  • Yanagi Y, Assunção JV, Barrozo LV (2012) The impact of atmospheric particulate matter on cancer incidence and mortality in the city of São Paulo, Brazil. Cad Saude Publica 28:1737–1748

    Article  PubMed  Google Scholar 

  • Zhang Y, Zheng L, Tuo J, Liu Q, Zhang X, Xu Z et al (2017) Analysis of PM2.5-induced cytotoxicity in human HaCaT cells based on a microfluidic system. Toxicol in Vitro 43:1–8. https://doi.org/10.1016/j.tiv.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Burke KE, Wang Y, Wei H (2019) Dietary lycopene protects SkH-1 mice against ultraviolet B-induced photocarcinogenesis. J Drugs Dermatol 18:1214–1223

    Google Scholar 

Download references

Acknowledgments

The author thanks Xueyan Zhou, MD, MS, for research assistance and Heather Nolan, MA, for excellent artistic rendition of the figures, research assistance, editing, and typing.

Conflicts of Interest

The author declares no conflict of interest with any aspect of the publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Burke, K.E. (2022). Skin Cancer Induced by Pollution-Mediated ROS. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_2

Download citation

Publish with us

Policies and ethics